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BACKGROUND AND MOTIVATION

Limitations of existing super-resolution methods:

• The space of the possible functions that map LR to HR images is ex-

tremely large, since there exist infinitely many HR images that can be

downscaled to obtain the same LR image.

• It is hard to obtain a promising SR model when the paired data are

unavailable.

CONTRIBUTIONS

• We propose a novel and theoretically guaranteed dual regression

scheme that can reduce the possible function space to enhance the

performance of SR models.

• With the dual regression scheme, deep models can be easily adapted

to unpaired real-world data, e.g., raw video frames from YouTube.

• Extensive experiments demonstrate the effectiveness of the proposed

dual regression scheme on both the SR tasks with paired training data

and unpaired real-world data.

DUAL REGRESSION SCHEME

The dual regression scheme contains a primal regression task for super-
resolution and a dual regression task to project super-resolved images
back to LR images.

Primal Regression Task

Dual Regression Task

LR images

LP

HR images

ොy

LD

y

x

ොx

closed-loop

The primal and dual regression tasks form a closed-loop to reduce the
space of possible mapping function, which helps to achieve more accurate
SR predictions.

TRAINING METHOD FOR PAIRED DATA
Training Method: Given paired data, the model is trained by minimizing
Eqn. (1) under the learning scheme of supervised SR methods.
Training Loss:

N∑
i=1

LP

(
P (xi),yi

)
︸ ︷︷ ︸

primal regression loss

+ λLD

(
D(P (xi)),xi

)
︸ ︷︷ ︸

dual regression loss

, (1)

• N is the number of paired samples, xi and yi denote the i-th pair of low- and
high-resolution images.

• LP and LD denote the loss function (`1-norm) for the primal and dual regres-
sion tasks.

TRAINING METHOD FOR UNPAIRED DATA
Training Method: As shown in Algorithm 1, the model is trained by
minimizing Eqn. (2) when given both paired and unpaired data.
Training Loss:

M+N∑
i=1

1SP (xi)LP
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)
+ λLD

(
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)
, (2)

• M and N donate the number of unpaired LR samples SU and paired synthetic
samples SP , respectively.

• 1SP (xi) is an indicator function that equals 1 when xi ∈ SP , and otherwise the
function equals 0.

Algorithm 1: Adaptation Algorithm on Unpaired Data.

Input: Unpaired real-world data: SU ;
Paired synthetic data: SP ;
Batch sizes for SU and SP : m and n;
Indicator function: 1SP (·).

1 Load the pretrained models P and D.
2 while not convergent do
3 Sample unlabeled data {xi}mi=1 from SU ;
4 Sample labeled data {(xi,yi)}m+n

i=m+1 from SP ;
5 // Update the primal model
6 Update P by minimizing the objective:

7
m+n∑
i=1

1SP (xi)LP

(
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)
+λLD

(
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)
8 // Update the dual model
9 Update D by minimizing the objective:

10
m+n∑
i=1

λLD

(
D(P (xi)),xi

)
11 end

THEORETICAL ANALYSIS
Theorem 1. Let LP (P (x),y)+λLD(D(P (x)),x) be a mapping from X×Y
to [0, C] with the upper bound C, and the function spaceHdual be infinite. Then,
for any error δ>0, with probability at least 1−δ, the generalization errorE(P,D)
(i.e., expected loss) satisfies for all (P,D)∈Hdual:

E(P,D) ≤ Ê(P,D)+2R̂DLZ (Hdual)+3C

√
1

2N
log

(
1

δ

)
,

where N is the number of samples, Ê(P,D) is empirical loss and
R̂DLZ is the empirical Rademacher complexity of dual learning. Let
B(P,D) be the generalization bound of the dual regression SR,

i.e.B(P,D)=2R̂DLZ (Hdual)+3C
√

1
2N log

(
1
δ

)
, we have

B(P,D) ≤ B(P ),
where B(P ), P∈H is the generalization bound of the supervised learning w.r.t.
the Rademacher complexity R̂SLZ (H).

Theorem 1 proves that the dual regression scheme has a smaller general-
ization bound than traditional SR methods.

RESULTS OF QUANTITATIVE COMPARISON
• Comparison results on SR tasks with paired dataTable 1. Performance comparison with state-of-the-art algorithms for 4× and 8× image super-resolution. The bold number indicates the

best result and the blue number indicates the second best result. “-” denotes the results that are not reported.

Algorithms Scale #Params (M) Set5 Set14 BSDS100 Urban100 Manga109
PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM

Bicubic

4

- 28.42 / 0.810 26.10 / 0.702 25.96 / 0.667 23.15 / 0.657 24.92 / 0.789
ESPCN [36] - 29.21 / 0.851 26.40 / 0.744 25.50 / 0.696 24.02 / 0.726 23.55 / 0.795

SRResNet [26] 1.6 32.05 / 0.891 28.49 / 0.782 27.61 / 0.736 26.09 / 0.783 30.70 / 0.908
SRGAN [26] 1.6 29.46 / 0.838 26.60 / 0.718 25.74 / 0.666 24.50 / 0.736 27.79 / 0.856
LapSRN [25] 0.9 31.54 / 0.885 28.09 / 0.770 27.31 / 0.727 25.21 / 0.756 29.09 / 0.890

SRDenseNet [38] 2.0 32.02 / 0.893 28.50 / 0.778 27.53 / 0.733 26.05 / 0.781 29.49 / 0.899
EDSR [28] 43.1 32.48 / 0.898 28.81 / 0.787 27.72 / 0.742 26.64 / 0.803 31.03 / 0.915
DBPN [17] 10.4 32.42 / 0.897 28.75 / 0.786 27.67 / 0.739 26.38 / 0.794 30.90 / 0.913
RCAN [53] 15.6 32.63 / 0.900 28.85 / 0.788 27.74 / 0.743 26.74 / 0.806 31.19 / 0.917

SAN [9] 15.9 32.64 / 0.900 28.92 / 0.788 27.79 / 0.743 26.79 / 0.806 31.18 / 0.916
RRDB [40] 16.7 32.73 / 0.901 28.97 / 0.790 27.83 / 0.745 27.02 / 0.815 31.64 / 0.919

DRN-S 4.8 32.68 / 0.901 28.93 / 0.790 27.78 / 0.744 26.84 / 0.807 31.52 / 0.919
DRN-L 9.8 32.74 / 0.902 28.98 / 0.792 27.83 / 0.745 27.03 / 0.813 31.73 / 0.922
Bicubic

8

- 24.39 / 0.657 23.19 / 0.568 23.67 / 0.547 20.74 / 0.515 21.47 / 0.649
ESPCN [36] - 25.02 / 0.697 23.45 / 0.598 23.92 / 0.574 21.20 / 0.554 22.04 / 0.683

SRResNet [26] 1.7 26.62 / 0.756 24.55 / 0.624 24.65 / 0.587 22.05 / 0.589 23.88 / 0.748
SRGAN [26] 1.7 23.04 / 0.626 21.57 / 0.495 21.78 / 0.442 19.64 / 0.468 20.42 / 0.625
LapSRN [25] 1.3 26.14 / 0.737 24.35 / 0.620 24.54 / 0.585 21.81 / 0.580 23.39 / 0.734

SRDenseNet [38] 2.3 25.99 / 0.704 24.23 / 0.581 24.45 / 0.530 21.67 / 0.562 23.09 / 0.712
EDSR [28] 45.5 27.03 / 0.774 25.05 / 0.641 24.80 / 0.595 22.55 / 0.618 24.54 / 0.775
DBPN [17] 23.2 27.25 / 0.786 25.14 / 0.649 24.90 / 0.602 22.72 / 0.631 25.14 / 0.798
RCAN [53] 15.7 27.31 / 0.787 25.23 / 0.651 24.96 / 0.605 22.97 / 0.643 25.23 / 0.802

SAN [9] 16.0 27.22 / 0.782 25.14 / 0.647 24.88 / 0.601 22.70 / 0.631 24.85 / 0.790
DRN-S 5.4 27.41 / 0.790 25.25 / 0.652 24.98 / 0.605 22.96 / 0.641 25.30 / 0.805
DRN-L 10.0 27.43 / 0.792 25.28 / 0.653 25.00 / 0.606 22.99 / 0.644 25.33 / 0.806

(a) Visual comparison for 4× super-resolution. (b) Visual comparison for 8× super-resolution.

Figure 5. Visual comparison of different methods for (a) 4× and (b) 8× image super-resolution.

5.2. Datasets and Implementation Details

We compare different methods on five benchmark
datasets, including SET5 [4], SET14 [50], BSDS100 [1],
URBAN100 [22] and MANGA109 [32]. Two commonly
used image quality metrics are adopted as the metrics, such
as PSNR and SSIM [41]. Following [40], we train our mod-
els on DIV2K [37] and Flickr2K [28] datasets.

5.2.1 Comparison with State-of-the-art Methods

We compare our method with state-of-the-art SR methods
in terms of both quantitative results and visual results. For

quantitative comparison, we compare the PSNR and SSIM
values of different methods for 4× and 8× super-resolution.
From Table 1, our DRN-S with about 5M parameters yields
promising performance. Our DRN-L with about 10M pa-
rameters yields comparable performance with the consid-
ered methods for 4× SR and yields the best performance
for 8× SR. For quality comparison, we provide visual com-
parisons for our method and the considered methods (See
Figure 5). For both 4× and 8× SR, our model consistently
produces sharper edges and shapes, while other baselines
may give more blurry ones. The results demonstrate the ef-
fectiveness of the proposed dual regression scheme in gen-
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• Comparison results on 8× SR tasks with unpaired synthetic data
Table 2. Adaptation performance of super-resolution models on images with different degradation methods for 8× SR.

Algorithms Degradation Set5 Set14 BSDS100 Urban100 Manga109
PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM

Nearest

Nearest

21.22 / 0.560 20.11 / 0.485 20.64 / 0.471 17.76 / 0.454 18.51 / 0.594
EDSR [28] 19.56 / 0.580 18.24 / 0.498 18.53 / 0.479 15.68 / 0.435 17.22 / 0.598
DBPN [17] 18.80 / 0.541 17.36 / 0.461 17.94 / 0.456 15.07 / 0.400 16.67 / 0.550
RCAN [53] 18.33 / 0.534 17.11 / 0.436 17.67 / 0.444 14.73 / 0.380 16.25 / 0.525

CinCGAN [46] 21.76 / 0.648 20.64 / 0.552 20.89 / 0.528 18.21 / 0.505 18.86 / 0.638
DRN-Adapt 23.00 / 0.715 21.52 / 0.561 21.98 / 0.539 19.07 / 0.518 19.83 / 0.613
EDSR [28]

BD

23.54 / 0.702 22.13 / 0.594 22.71 / 0.567 19.70 / 0.551 20.64 / 0.700
DBPN [17] 23.05 / 0.693 21.65 / 0.586 22.50 / 0.565 19.28 / 0.538 20.16 / 0.689
RCAN [53] 22.23 / 0.678 21.01 / 0.567 21.85 / 0.552 18.36 / 0.509 19.34 / 0.659

CinCGAN [46] 23.39 / 0.682 22.14 / 0.581 22.73 / 0.554 20.36 / 0.538 20.29 / 0.670
DRN-Adapt 24.62 / 0.719 23.07 / 0.612 23.59 / 0.583 20.57 / 0.591 21.52 / 0.714

erating more accurate and visually promising HR images.
More results are put in the supplementary.

We also compare the number of parameters in different
models for 4× and 8× SR. Due to the page limit, we only
show the results for 4× SR and put the 8× SR in the sup-
plementary. From Figure 4, our DRN-S obtains promising
performance with a small number of parameters. When we
increase the number of channels and layers, the larger model
DRN-L further improves the performance and obtains the
best results. Both the empirical results and the theoretical
analysis in Theorem 1 show the effectiveness of the pro-
posed dual regression scheme for image super-resolution.

5.3. Adaptation Results on Unpaired Data

In this experiment, we apply the proposed method to a
variety of real-world unpaired data. Different from the su-
pervised setting, we first consider a toy case where we eval-
uate SR models on the LR images with different degrada-
tion methods (e.g., Nearest and BD [51]). During training,
we can only access the LR images but not their correspond-
ing HR images. Then, we also apply our method to LR raw
video frames from YouTube.

5.3.1 Datasets and Implementation Details

In this experiment, we obtain the paired synthetic data by
downsampling existing images. Considering the real-world
SR applications, all the paired data belong to a different
domain from the unpaired data (See more discussions in
supplementary). Following [35], we randomly choose 3k
images from ImageNet (called ImageNet3K) and obtain
LR images using different degradation methods, including
Nearest and BD. We adopt DIV2K (Bicubic) as the paired
synthetic data2 and ImageNet3K LR images with different
degradations as the unpaired data. Note that ImageNet3K
HR images are not used in our experiments. For the SR task

2We can also use other degradation methods to obtain the paired syn-
thetic data. We put the impact of degradation methods in supplementary.

Figure 6. Visual comparison of model adaptation to real-world
video frames (from YouTube) for 8× SR.

on video, we collect 3k raw video frames as the unpaired
data to train the models. In this section, we use our DRN-
S model to evaluate the proposed adaptation algorithm and
call the resultant model DRN-Adapt. More details can be
found in supplementary.

5.3.2 Comparison on Unpaired Synthetic Data

To evaluate the adaptation performance on unpaired data,
we compare our DRN-Adapt and the baseline methods on
synthetic data. We report the PSRN and SSIM values of dif-
ferent methods for 8× super-resolution in Table 2.

From Table 2, DRN-Adapt consistently outperforms the
supervised methods on all the datasets. For CycleGAN
based method, CinCGAN achieves better performance than
the supervised learning methods but still cannot surpass our
method due to the inherent limitations mentioned before.
Note that, for Nearest LR data, we also report the recovering
results of the Nearest kernel, which is the same as the degra-
dation method. Our method also yields a large performance
improvement over this baseline. These results demonstrate
the effectiveness of the proposed adaptation algorithm.

5.3.3 Comparison on Unpaired Real-world Data

We apply our method to YouTube raw video frames, which
are more challenging owing to the complicated and un-
known degradation in real-world scenarios. Since there are
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RESULTS OF VISUALIZATION COMPARISON
• Visualization comparison results on paired data

Figure 1: Visualization comparison on 4× SR with pair data.

Figure 2: Visualization comparison on 8× SR with pair data.

• Visualization comparison results on unpaired real-world data

Figure 3: Visualization comparison on 8× SR with unpair real world data.

CONTACT INFORMATION AND CODE

• Email: mingkuitan@scut.edu.cn

• Code: https://github.com/guoyongcs/DRN


