

IEEE Conference on COMPARENT Connected on Computer Vision and Pattern Recognition Computer Vision and

BACKGROUND AND MOTIVATION

Limitations of existing super-resolution methods:

- The space of the possible functions that map LR to HR images is **ex**tremely large, since there exist infinitely many HR images that can be downscaled to obtain the same LR image.
- It is hard to obtain a promising SR model when the paired data are unavailable.

CONTRIBUTIONS

- We propose a novel and theoretically guaranteed dual regression scheme that can reduce the possible function space to enhance the performance of SR models.
- With the dual regression scheme, deep models can be **easily adapted** to unpaired real-world data, *e.g.*, raw video frames from YouTube.
- Extensive experiments demonstrate the **effectiveness** of the proposed dual regression scheme on both the SR tasks with paired training data and **unpaired real-world** data.

DUAL REGRESSION SCHEME

The dual regression scheme contains a **primal regression task** for superresolution and a dual regression task to project super-resolved images back to LR images.

The primal and dual regression tasks form a **closed-loop** to reduce the space of possible mapping function, which helps to achieve more accurate SR predictions.

Closed-loop Matters: Dual Regression Networks for Single Image Super-Resolution Yong Guo^{*}, Jian Chen^{*}, Jingdong Wang^{*}, Qi Chen, Jiezhang Cao, Zeshuai Deng, Yanwu Xu[†], Mingkui Tan[†]

TRAINING METHOD FOR PAIRED DATA

Training Method: Given paired data, the model is trained by minimizing Eqn. (1) under the learning scheme of supervised SR methods.

Training Loss:

$$\sum_{i=1}^{N} \underbrace{\mathcal{L}_{P}\Big(P(\mathbf{x}_{i}), \mathbf{y}_{i}\Big)}_{\text{primal regression loss}} + \lambda \underbrace{\mathcal{L}_{D}\Big(D(P(\mathbf{x}_{i})), \mathbf{x}_{i}\Big)}_{\text{dual regression loss}}, \tag{1}$$

- N is the number of paired samples, \mathbf{x}_i and \mathbf{y}_i denote the i-th pair of low- and high-resolution images.
- \mathcal{L}_P and \mathcal{L}_D denote the loss function (ℓ_1 -norm) for the primal and dual regression tasks.

TRAINING METHOD FOR UNPAIRED DATA

Training Method: As shown in Algorithm 1, the model is trained by minimizing Eqn. (2) when given both paired and unpaired data.

Training Loss:

$$\sum_{i=1}^{M+N} \mathbf{1}_{\mathcal{S}_P}(\mathbf{x}_i) \mathcal{L}_P(P(\mathbf{x}_i), \mathbf{y}_i) + \lambda \mathcal{L}_D(D(P(\mathbf{x}_i)), \mathbf{x}_i),$$
(2)

- *M* and *N* donate the number of unpaired LR samples S_U and paired synthetic samples S_P , respectively.
- $\mathbf{1}_{\mathcal{S}_P}(\mathbf{x}_i)$ is an indicator function that equals 1 when $\mathbf{x}_i \in \mathcal{S}_P$, and otherwise the function equals 0.

Algorithm 1: Adaptation Algorithm on Unpaired Data.

Input: Unpaired real-world data:
$$S_U$$
;
Paired synthetic data: S_P ;
Batch sizes for S_U and S_P : m and n ;
Indicator function: $\mathbf{1}_{S_P}(\cdot)$.
1 Load the pretrained models P and D .
2 while not convergent do
3 Sample unlabeled data $\{\mathbf{x}_i\}_{i=1}^m$ from S_U ;
4 Sample labeled data $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=m+1}^{m+n}$ from S_P ;
5 // Update the primal model
6 Update P by minimizing the objective:
7 $\sum_{i=1}^{m+n} \mathbf{1}_{S_P}(\mathbf{x}_i)\mathcal{L}_P(P(\mathbf{x}_i), \mathbf{y}_i) + \lambda \mathcal{L}_D(D(P(\mathbf{x}_i)))$,
8 // Update the dual model
9 Update D by minimizing the objective:
10 $\sum_{i=1}^{m+n} \lambda \mathcal{L}_D(D(P(\mathbf{x}_i)), \mathbf{x}_i)$
11 end

THEORETICAL ANALYSIS

Theorem 1. Let $\mathcal{L}_P(P(\mathbf{x}), \mathbf{y}) + \lambda \mathcal{L}_D(D(P(\mathbf{x})), \mathbf{x})$ be a mapping from $\mathcal{X} \times \mathcal{Y}$ to [0, C] with the upper bound C, and the function space \mathcal{H}_{dual} be infinite. Then, for any error $\delta > 0$, with probability at least $1 - \delta$, the generalization error E(P, D)(*i.e.*, expected loss) satisfies for all $(P, D) \in \mathcal{H}_{dual}$:

$$E(P,D) \leq \hat{E}(P,D) + 2\hat{R}_{\mathcal{Z}}^{DL}(\mathcal{H}_{dual}) + 3C\sqrt{\frac{1}{2N}\log\left(\frac{1}{\delta}\right)},$$

where N is the number of samples, $\hat{E}(P,D)$ is empirical loss and $\hat{R}_{\mathcal{Z}}^{DL}$ is the empirical Rademacher complexity of dual learning. $\mathcal{B}(P,D)$ be the generalization bound of the dual regression SR, *i.e.* $\mathcal{B}(P,D)=2\hat{R}_{\mathcal{Z}}^{DL}(\mathcal{H}_{dual})+3C\sqrt{\frac{1}{2N}\log\left(\frac{1}{\delta}\right)}$, we have

 $\mathcal{B}(P,D) \leq \mathcal{B}(P),$

where $\mathcal{B}(P), P \in \mathcal{H}$ is the generalization bound of the supervised learning w.r.t. the Rademacher complexity $\hat{R}^{SL}_{z}(\mathcal{H})$.

Theorem 1 proves that the dual regression scheme has a smaller general**ization bound** than traditional SR methods.

Results of quantitative comparison

• Comparison results on SR tasks with paired data

Algorithms	Scale	#Params (M)	Set5	Set14	BSDS100	Urban100	Manga109
			PSNR / SSIM	PSNR / SSIM	PSNR / SSIM	PSNR / SSIM	PSNR / SSIM
Bicubic	4	_	28.42 / 0.810	26.10 / 0.702	25.96 / 0.667	23.15 / 0.657	24.92 / 0.789
ESPCN [36]		_	29.21 / 0.851	26.40 / 0.744	25.50 / 0.696	24.02 / 0.726	23.55 / 0.795
SRResNet [26]		1.6	32.05 / 0.891	28.49 / 0.782	27.61 / 0.736	26.09 / 0.783	30.70 / 0.908
SRGAN [26]		1.6	29.46 / 0.838	26.60 / 0.718	25.74 / 0.666	24.50 / 0.736	27.79 / 0.856
LapSRN [25]		0.9	31.54 / 0.885	28.09 / 0.770	27.31 / 0.727	25.21 / 0.756	29.09 / 0.890
SRDenseNet [38]		2.0	32.02 / 0.893	28.50 / 0.778	27.53 / 0.733	26.05 / 0.781	29.49 / 0.899
EDSR [28]		43.1	32.48 / 0.898	28.81 / 0.787	27.72 / 0.742	26.64 / 0.803	31.03 / 0.915
DBPN [17]		10.4	32.42 / 0.897	28.75 / 0.786	27.67 / 0.739	26.38 / 0.794	30.90 / 0.913
RCAN [53]		15.6	32.63 / 0.900	28.85 / 0.788	27.74 / 0.743	26.74 / 0.806	31.19 / 0.917
SAN [9]		15.9	32.64 / 0.900	28.92 / 0.788	27.79 / 0.743	26.79 / 0.806	31.18 / 0.916
RRDB [40]		16.7	32.73 / 0.901	28.97 / 0.790	27.83 / 0.745	27.02 / 0.815	31.64 / 0.919
DRN-S		4.8	32.68 / 0.901	28.93 / 0.790	27.78 / 0.744	26.84 / 0.807	31.52 / 0.919
DRN-L		9.8	32.74 / 0.902	28.98 / 0.792	27.83 / 0.745	27.03 / 0.813	31.73 / 0.922
Bicubic	8	_	24.39 / 0.657	23.19 / 0.568	23.67 / 0.547	20.74 / 0.515	21.47 / 0.649
ESPCN [36]		_	25.02 / 0.697	23.45 / 0.598	23.92 / 0.574	21.20 / 0.554	22.04 / 0.683
SRResNet [26]		1.7	26.62 / 0.756	24.55 / 0.624	24.65 / 0.587	22.05 / 0.589	23.88 / 0.748
SRGAN [26]		1.7	23.04 / 0.626	21.57 / 0.495	21.78 / 0.442	19.64 / 0.468	20.42 / 0.625
LapSRN [25]		1.3	26.14 / 0.737	24.35 / 0.620	24.54 / 0.585	21.81 / 0.580	23.39 / 0.734
SRDenseNet [38]		2.3	25.99 / 0.704	24.23 / 0.581	24.45 / 0.530	21.67 / 0.562	23.09 / 0.712
EDSR [28]		45.5	27.03 / 0.774	25.05 / 0.641	24.80 / 0.595	22.55 / 0.618	24.54 / 0.775
DBPN [17]		23.2	27.25 / 0.786	25.14 / 0.649	24.90 / 0.602	22.72 / 0.631	25.14 / 0.798
RCAN [53]		15.7	27.31 / 0.787	25.23 / 0.651	24.96 / 0.605	22.97 / 0.643	25.23 / 0.802
SAN [9]		16.0	27.22 / 0.782	25.14 / 0.647	24.88 / 0.601	22.70 / 0.631	24.85 / 0.790
DRN-S		5.4	27.41 / 0.790	25.25 / 0.652	24.98 / 0.605	22.96 / 0.641	25.30 / 0.805
DRN-L		10.0	27.43 / 0.792	25.28 / 0.653	25.00 / 0.606	22.99 / 0.644	25.33 / 0.806

• Comparison results on $8 \times$ SR tasks with unpaired synthetic data

Algorithms	Degradation	Set5	Set14	BSDS100	Urban100	Manga109
		PSNR / SSIM				
Nearest		21.22 / 0.560	20.11 / 0.485	20.64 / 0.471	17.76 / 0.454	18.51 / 0.594
EDSR [28]		19.56 / 0.580	18.24 / 0.498	18.53 / 0.479	15.68 / 0.435	17.22 / 0.598
DBPN [17]	Nearest	18.80 / 0.541	17.36 / 0.461	17.94 / 0.456	15.07 / 0.400	16.67 / 0.550
RCAN [53]		18.33 / 0.534	17.11 / 0.436	17.67 / 0.444	14.73 / 0.380	16.25 / 0.525
CinCGAN [46]		21.76 / 0.648	20.64 / 0.552	20.89 / 0.528	18.21 / 0.505	18.86 / 0.638
DRN-Adapt		23.00 / 0.715	21.52 / 0.561	21.98 / 0.539	19.07 / 0.518	19.83 / 0.613
EDSR [28]		23.54 / 0.702	22.13 / 0.594	22.71 / 0.567	19.70 / 0.551	20.64 / 0.700
DBPN [17]		23.05 / 0.693	21.65 / 0.586	22.50 / 0.565	19.28 / 0.538	20.16 / 0.689
RCAN [53]	BD	22.23 / 0.678	21.01 / 0.567	21.85 / 0.552	18.36 / 0.509	19.34 / 0.659
CinCGAN [46]		23.39 / 0.682	22.14 / 0.581	22.73 / 0.554	20.36 / 0.538	20.29 / 0.670
DRN-Adapt		24.62 / 0.719	23.07 / 0.612	23.59 / 0.583	20.57 / 0.591	21.52 / 0.714

RESULTS OF VISUALIZATION COMPARISON

• Visualization comparison results on paired data

Figure 1: Visualization comparison on 4× SR with pair data.

Figure 2: Visualization comparison on 8× SR with pair data.

• Visualization comparison results on unpaired real-world data

LR video frame

DBPN

DRN-Adapt

Figure 3: Visualization comparison on 8× SR with unpair real world data.

CONTACT INFORMATION AND CODE

- Email: mingkuitan@scut.edu.cn
- Code: https://github.com/guoyongcs/DRN

