

Closed-loop Matters: Dual Regression Networks for Single Image Super-Resolution

Yong Guo, Jian Chen, Jingdong Wang, Qi Chen, Jiezhang Cao, Zeshuai Deng, Yanwu Xu, Mingkui Tan

Code: <u>https://github.com/guoyongcs/DRN</u>

Motivation

Limitations of existing SR methods

- The space of the possible functions that map LR to HR images is extremely large because infinitely many HR images can be downsampled to the same LR image
- It is hard to obtain a promising SR model when the paired data are unavailable

It is hard for existing methods to find a good solution due to the large space of possible mapping functions

SR models often incur a severe adaptation problem and yield poor performance on

unpaired real-world data

Dual Regression Scheme

Our method

We propose a novel dual regression scheme that can reduce the possible function space

to enhance the performance of SR models

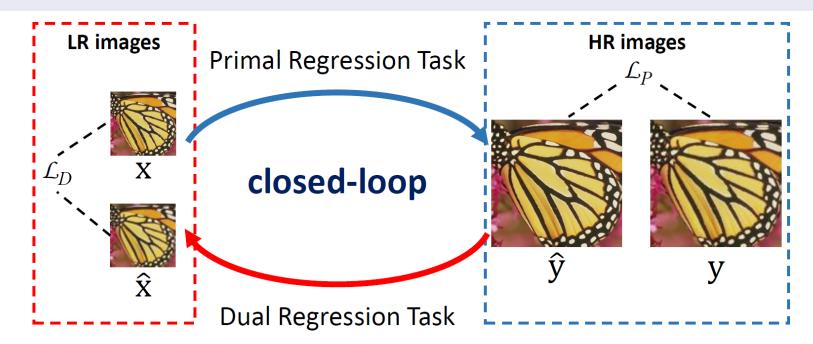


Figure 2. Dual regression training scheme, which contains a primal regression task for super-resolution and a dual regression task to project super-resolved images back to LR images

Dual Reconstruction Network (DRN)

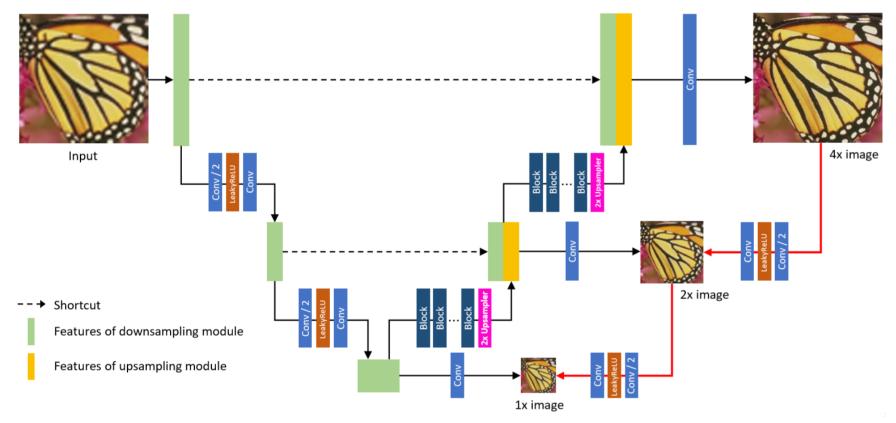


Figure 3. The architecture of DRN for 4× super-resolution

- DRN contains a primal network and a dual network (marked as red lines)
- The primal module follows the downsampling-upsampling design of U-Net
- The dual module has two convolution layers and a LeakyReLU activation layer

Given paired data, the model is trained by minimizing Eqn. (1) under the learning scheme of supervised SR methods:

$$\sum_{i=1}^{N} \underbrace{\mathcal{L}_{P}\Big(P(\mathbf{x}_{i}), \mathbf{y}_{i}\Big)}_{\text{primal regression loss}} + \underbrace{\lambda \mathcal{L}_{D}\Big(D(P(\mathbf{x}_{i})), \mathbf{x}_{i}\Big)}_{\text{dual regression loss}}$$

(1)

Notation

- x_i, y_i donate the *i*-th pair of low- and high-resolution images
- \square \mathcal{L}_P , \mathcal{L}_D are the loss function (L1-norm) for the primal and dual tasks
- \blacksquare λ controls the weight of the dual reconstruction loss

Adaptation Algorithm on Unpaired Data

Our method

We propose an efficient adaptation algorithm to adapt SR models to the unpaired LR data

Given both unpaired data and paired data, the model is trained by minimizing Eqn. (2):

$$\sum_{i=1}^{M+N} \mathbf{1}_{S_P}(\mathbf{x}_i) \mathcal{L}_P(P(\mathbf{x}_i), \mathbf{y}_i) + \lambda \mathcal{L}_D(D(P(\mathbf{x}_i)), \mathbf{x}_i)$$
(2)

Notation

■ $1_{S_P}(\cdot)$ is an indicator function that equals to 1 when $\mathbf{x_i} \in S_P$ (S_P is paired dataset), and otherwise the function equals 0

Algorithm 1: Adaptation Algorithm on Unpaired Data. **Input:** Unpaired real-world data: S_U ; Paired synthetic data: S_P ; Batch sizes for S_U and S_P : *m* and *n*; Indicator function: $\mathbf{1}_{S_P}(\cdot)$. 1 Load the pretrained models P and D. 2 while not convergent do Sample unlabeled data $\{\mathbf{x}_i\}_{i=1}^m$ from \mathcal{S}_U ; 3 Sample labeled data $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=m+1}^{m+n}$ from \mathcal{S}_P ; 4 *II Update the primal model* 5 Update *P* by minimizing the objective: 6 $\sum_{i=1}^{m+n} \mathbf{1}_{\mathcal{S}_P}(\mathbf{x}_i) \mathcal{L}_P(P(\mathbf{x}_i), \mathbf{y}_i) + \lambda \mathcal{L}_D(D(P(\mathbf{x}_i)), \mathbf{x}_i)$ 7 *II Update the dual model* 8 Update *D* by minimizing the objective: 9 $\sum_{i=1}^{m+n} \lambda \mathcal{L}_D \Big(D(P(\mathbf{x}_i)), \mathbf{x}_i \Big)$ 10 11 end

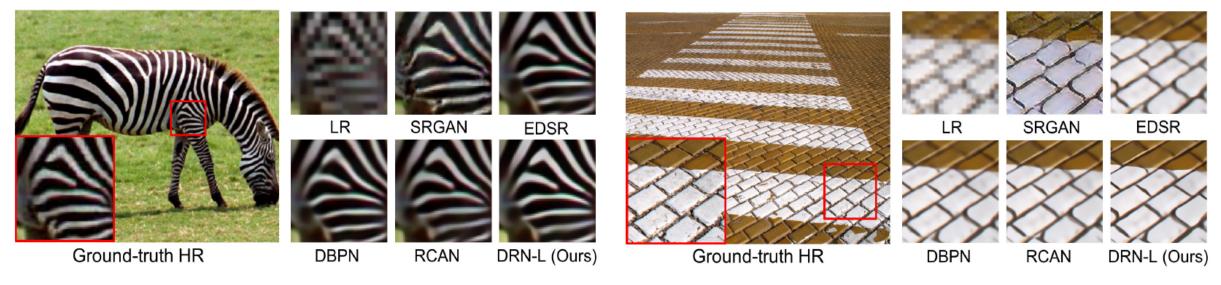
SR tasks with paired Bicubic data

Table 1. Performance							mber indicates the
best result and the blue	e number	indicates the sec	ond best result. "-	" denotes the resu	lts that are not rep	oorted.	
Algorithms	Scale	#Params (M)	Set5	Set14	BSDS100	Urban100	Manga109
			PSNR / SSIM	PSNR / SSIM	PSNR / SSIM	PSNR / SSIM	PSNR / SSIM
Bicubic	4	-	28.42 / 0.810	26.10/0.702	25.96 / 0.667	23.15 / 0.657	24.92 / 0.789
ESPCN [33]		-	29.21 / 0.851	26.40 / 0.744	25.50 / 0.696	24.02 / 0.726	23.55 / 0.795
SRResNet [24]		1.6	32.05 / 0.891	28.49 / 0.782	27.61 / 0.736	26.09 / 0.783	30.70 / 0.908
SRGAN [24]		1.6	29.46 / 0.838	26.60/0.718	25.74 / 0.666	24.50 / 0.736	27.79 / 0.856
LapSRN [23]		0.9	31.54 / 0.885	28.09 / 0.770	27.31/0.727	25.21 / 0.756	29.09 / 0.890
SRDenseNet [35]		2.0	32.02 / 0.893	28.50/0.778	27.53 / 0.733	26.05 / 0.781	29.49 / 0.899
EDSR [26]		43.1	32.48 / 0.898	28.81 / 0.787	27.72 / 0.742	26.64 / 0.803	31.03 / 0.915
DBPN [16]		10.4	32.42 / 0.897	28.75 / 0.786	27.67 / 0.739	26.38 / 0.794	30.90 / 0.913
RCAN [51]		15.6	32.63 / 0.900	28.85 / 0.788	27.74 / 0.743	26.74 / 0.806	31.19/0.917
SAN [8]		15.9	32.64 / 0.900	28.92 / 0.788	27.79 / 0.743	26.79 / 0.806	31.18 / 0.916
RRDB [37]		16.7	32.73 / 0.901	28.97 / 0.790	27.83 / 0.745	27.02 / 0.815	31.64 / 0.919
DRN-S		4.8	32.68 / 0.901	28.93 / 0.790	27.78 / 0.744	26.84 / 0.807	31.52 / 0.919
DRN-L		9.8	32.74 / 0.902	28.98 / 0.792	27.83 / 0.745	27.03 / 0.813	31.73 / 0.922
Bicubic	8	-	24.39 / 0.657	23.19/0.568	23.67 / 0.547	20.74 / 0.515	21.47 / 0.649
ESPCN [33]		-	25.02 / 0.697	23.45 / 0.598	23.92/0.574	21.20/0.554	22.04 / 0.683
SRResNet [24]		1.7	26.62 / 0.756	24.55 / 0.624	24.65 / 0.587	22.05 / 0.589	23.88 / 0.748
SRGAN [24]		1.7	23.04 / 0.626	21.57 / 0.495	21.78 / 0.442	19.64 / 0.468	20.42 / 0.625
LapSRN [23]		1.3	26.14 / 0.737	24.35 / 0.620	24.54 / 0.585	21.81 / 0.580	23.39 / 0.734
SRDenseNet [35]		2.3	25.99 / 0.704	24.23 / 0.581	24.45 / 0.530	21.67 / 0.562	23.09 / 0.712
EDSR [26]		45.5	27.03 / 0.774	25.05 / 0.641	24.80 / 0.595	22.55 / 0.618	24.54 / 0.775
DBPN [16]		23.2	27.25 / 0.786	25.14 / 0.649	24.90 / 0.602	22.72 / 0.631	25.14 / 0.798
RCAN [51]		15.7	27.31 / 0.787	25.23 / 0.651	24.96 / 0.605	22.97 / 0.643	25.23 / 0.802
SAN [8]		16.0	27.22 / 0.782	25.14 / 0.647	24.88 / 0.601	22.70/0.631	24.85 / 0.790
DRN-S		5.4	27.41 / 0.790	25.25 / 0.652	24.98 / 0.605	22.96 / 0.641	25.30 / 0.805
DRN-L		10.0	27.43 / 0.792	25.28 / 0.653	25.00 / 0.606	22.99 / 0.644	25.33 / 0.806

DRN-S with about 5M parameters yields promising performance

DRN-L with about 10M parameters yields the best performance

SR tasks with paired Bicubic data



(a) Visual comparison for 4× super-resolution

(b) Visual comparison for 8× super-resolution

Figure 4. Visual comparison of different methods for 4× and 8× image super-resolution

Our model consistently produces images with sharper edges and shapes, while other baselines may give more blurry ones

SR tasks with unpaired data

Table 2. Adap	Table 2. Adaptation performance of super-resolution models on images with different degradation methods for $8 \times$ SR.									
Algorithms	Degradation	Set5 PSNR / SSIM	Set14 PSNR / SSIM	BSDS100 PSNR / SSIM	Urban100 PSNR / SSIM	Manga109 PSNR / SSIM				
Nearest	Nearest	21.22 / 0.560	20.11 / 0.485	20.64 / 0.471	17.76 / 0.454	18.51 / 0.594				
EDSR [26]		19.56 / 0.580	18.24 / 0.498	18.53 / 0.479	15.68 / 0.435	17.22 / 0.598				
DBPN [16]		18.80 / 0.541	17.36 / 0.461	17.94 / 0.456	15.07 / 0.400	16.67 / 0.550				
RCAN [51]		18.33 / 0.534	17.11 / 0.436	17.67 / 0.444	14.73 / 0.380	16.25 / 0.525				
CinCGAN [43]		21.76 / 0.648	20.64 / 0.552	20.89 / 0.528	18.21 / 0.505	18.86 / 0.638				
DRN-Adapt		23.00 / 0.715	21.52 / 0.561	21.98 / 0.539	19.07 / 0.518	19.83 / 0.613				
EDSR [26]	BD	23.54 / 0.702	22.13 / 0.594	22.71 / 0.567	19.70 / 0.551	20.64 / 0.700				
DBPN [16]		23.05 / 0.693	21.65 / 0.586	22.50 / 0.565	19.28 / 0.538	20.16 / 0.689				
RCAN [51]		22.23 / 0.678	21.01 / 0.567	21.85 / 0.552	18.36 / 0.509	19.34 / 0.659				
CinCGAN [43]		23.39 / 0.682	22.14 / 0.581	22.73 / 0.554	20.36 / 0.538	20.29 / 0.670				
DRN-Adapt		24.62 / 0.719	23.07 / 0.612	23.59 / 0.583	20.57 / 0.591	21.52 / 0.714				

DRN-Adapt outperforms the baseline methods on unpaired synthetic data

Figure 5. Visual comparison of model adaptation to real-world video frames (from YouTube) for 8× SR

DRN-Adapt produces visually promising images with sharper and clearer textures

- We propose a theoretically guaranteed dual regression scheme that can reduce the possible function space to enhance the performance of SR models
- We propose an efficient adaptation algorithm to adapt SR model to unpaired real-world data, such as raw video frames from YouTube
- Extensive experiments on both paired and unpaired data demonstrate the superiority of DRN over the considered baseline methods

Code: <u>https://github.com/guoyongcs/DRN</u>