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TRAINING AND INFERENCE METHOD
¢ Training method for NAT

Algorithm 1 Training method for Neural Architecture Transformer.

BACKGROUND AND MOTIVATION

VISUALIZATION OF ARCHITECTURES

o Architecture optimization results on hand-crafted architectures

OPTIMIZATION FOR ARBITRARY ARCHITECTURE

Given any arbitrary architecture 8 ~ p(-), we seek to find the optimal

Limitations of existing architecture design methods:

architecture a. The optimization problem can be formulated as:

e Hand-crafted architecture design methods rely on substantial hu- ——— oy Architecture View of Graph View of Network
] . Initiate w and 6. o
man expertise and cannot fully explore the whole architecture de- HLEX sp() (B (|B)], s.t. cla) < k. (1) 2: while not convergent do VGG
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sign space. — —
gn Sp e R(a|f)= R(a,w,)— R(B,ws) denotes the performance improvement . Sample B; ~ p(-) to construct a batch {3} ;.
e Neural architecture search (NAS) methods often produce subopimal between the optimized architectures a and the given architectures f. 5: Update the model parameters w by descending the gradient.
architectures due to the extremely large search space. w,, and wg are the parameters of o and 3, respectively. 6 end for e
- g ' 7.  for each iteration on validation data do
Both hand-crafted architect d NAS based architect tai -) measures the computation cost of an architecture. o: Sample f3; ~ p(-) to construct a batch {£; }i~,.
oth hand-crafted architectures an ased architectures may contain o () P . Obtain {o;}", according to the policy leamned by GCN. cesNet
non-significant or redundant operations. e r is an upper bound of the cost. 10: Update the parameters 6 by ascending the gradient.
11:  end for
CONTRIBUTIONS We sample a from the well learned policy, i.e., & ~ 7(+|3; 0). To learn the 12: end while NAT-ResTet
- - it . o Inferring the optimized architectures
e We propose a novel Neural Architecture Transformer (NAT) to opti-| | P olicy, we solve the following optimization problem: 5 p. , , . L . ,
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2. Select the architectures with the highest validation accuracy.

putational cost. o Architecture optimization results on NAS based architectures

MARKOV DECISION PROCESS

e We cast the optimization problem into a Markov decision process RESULTS ON DIFFERENT ARCHITECTURES Architecture _Normal cell Reduction cell
‘ We cast the problem (2) into an Markov Decision Process. . . A mopo s ecomefs
(MDP) and employ graph convolution network (GCN) to learn the b ) e Results on hand-crafted architectures (comparisons on ImageNet) T ( =
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B : : h he effects {NAT both hand Model Method #Params (M) #MAdds (M) Top-1 ' T(())p— 5 ——— e
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o Operations can be categorized into {S, IV, O }, ResNet50  NAO 34.8 4505 774 932 CNAS s com 55
. . To better exploit the adjacency information of architecture graph, we use NAT 25.6 3547 77.7 935 i
1. S denotes skip connection 7 34 300 0 903 | — e el
. a two-layer graph convolution network to build the controller: MobileNetV2 ~ NAO 4.5 513 722 90.6
2. NN denotes null connection NAT 34 200 725 910
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e A: adjacency matrix of the architecture graph. Model Method  #Params (M) ~#MAdds (M) —pr =03 .
C(O) > C(S) > C(N) . . AmoebaNet [34] 5.1 555 745  92.0
X: attributes of the nodes in the graph. gﬁﬁig 52 / i; ggg ;‘213 g(l)g Figure 2: Visualization of some optimized N AS-based architectures
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