
Neural Information
Processing Systems
Foundation

Page 1 of 1

2018/11/17file:///E:/Projects/2018/NIPS/poster/dcp/figures/Logo.svg

Tencent
Al Lab

NAT: Neural Architecture Transformer for Accurate and Compact Architectures
Yong Guo∗, Yin Zheng∗, Mingkui Tan∗†, Qi Chen, Jian Chen†, Peilin Zhao, Junzhou Huang

BACKGROUND AND MOTIVATION

Limitations of existing architecture design methods:

• Hand-crafted architecture design methods rely on substantial hu-

man expertise and cannot fully explore the whole architecture de-

sign space.

• Neural architecture search (NAS) methods often produce subopimal

architectures due to the extremely large search space.

Both hand-crafted architectures and NAS based architectures may contain

non-significant or redundant operations.

CONTRIBUTIONS
• We propose a novel Neural Architecture Transformer (NAT) to opti-

mize any arbitrary architecture with better performance and less com-

putational cost.

• We cast the optimization problem into a Markov decision process

(MDP) and employ graph convolution network (GCN) to learn the

optimal policy.

• Extensive experiments show the effectiveness of NAT on both hand-

crafted and NAS-based architectures.

PROBLEM DEFINITION
• Operations can be categorized into {S, N , O}.

1. S denotes skip connection

2. N denotes null connection

3. O denotes other connections

• The computational cost follows:

c(O) > c(S) > c(N)

N

O

S

• We only allow the transitions: O → S,O → N,S → N,N → S.

Goal: Transform any arbitrary architecture for better performance and
less computational cost.

Solution: Replace redundant operations with more efficient ones, such
as S and N .

OPTIMIZATION FOR ARBITRARY ARCHITECTURE
Given any arbitrary architecture β ∼ p(·), we seek to find the optimal

architecture α. The optimization problem can be formulated as:

max
θ

Eβ∼p(·) [R (α|β)] , s.t. c(α) ≤ κ. (1)

• R(α|β) = R(α,wα)−R(β,wβ) denotes the performance improvement

between the optimized architectures α and the given architectures β.

wα and wβ are the parameters of α and β, respectively.

• c(·) measures the computation cost of an architecture.

• κ is an upper bound of the cost.

We sample α from the well learned policy, i.e., α ∼ π(·|β; θ). To learn the

policy, we solve the following optimization problem:

max
θ

Eβ∼p(·)
[
Eα∼π(·|β;θ) R (α|β)

]
, s.t. c(α) ≤ κ, α ∼ π(·|β; θ). (2)

MARKOV DECISION PROCESS
We cast the problem (2) into an Markov Decision Process.

• An architecture is defined as a state.

• A transformation mapping β → α is defined as an action.

• The accuracy improvement on validation set is regraded as reward.

POLICY LEARNING BY GCN
To better exploit the adjacency information of architecture graph, we use

a two-layer graph convolution network to build the controller:

Z = f(X,A) = Softmax
(
Aσ

(
AXW(0)

)
W(1)WFC

)
. (3)

• A: adjacency matrix of the architecture graph.

• X: attributes of the nodes in the graph.

• W(0) and W(1): weights of graph convolution layers.

• WFC: weight of the fully-connected layer.

• σ: non-linear activation function.

• Z: probability distribution of different operations, i.e., the learned
policy π(·|β; θ).

TRAINING AND INFERENCE METHOD
• Training method for NAT

Algorithm 1 Training method for Neural Architecture Transformer.

1: Initiate w and θ.
2: while not convergent do
3: for each iteration on training data do
4: Sample βi ∼ p(·) to construct a batch {βi}mi=1.
5: Update the model parameters w by descending the gradient.
6: end for
7: for each iteration on validation data do
8: Sample βi ∼ p(·) to construct a batch {βi}mi=1.
9: Obtain {αj}nj=1 according to the policy learned by GCN.

10: Update the parameters θ by ascending the gradient.
11: end for
12: end while

• Inferring the optimized architectures
1. Sample candidate architectures from the learned policy π(·|β; θ).
2. Select the architectures with the highest validation accuracy.

RESULTS ON DIFFERENT ARCHITECTURES
• Results on hand-crafted architectures (comparisons on ImageNet)

Table 1: Performance comparison of the optimized architectures obtained by different methods based
on hand-crafted architectures. “/” denotes the original models that are not changed by architecture
optimization methods.

Model Method #Params (M) #MAdds (M) Acc. (%)
Top-1 Top-5

VGG16
/ 138.4 15620 71.6 90.4

NAO 147.7 18896 72.9 91.3
NAT 138.4 15693 74.3 92.0

ResNet18
/ 11.7 1580 69.8 89.1

NAO 17.9 2246 70.8 89.7
NAT 11.7 1588 71.1 90.0

ResNet50
/ 25.6 3530 76.2 92.9

NAO 34.8 4505 77.4 93.2
NAT 25.6 3547 77.7 93.5

MobileNetV2
/ 3.4 300 72.0 90.3

NAO 4.5 513 72.2 90.6
NAT 3.4 302 72.5 91.0

Table 2: Comparisons of the optimized architectures obtained by different methods based on NAS
based architectures. “-” denotes that the results are not reported. “/” denotes the original models that
are not changed by architecture optimization methods. † denotes the models trained with cutout.

CIFAR-10 ImageNet

Model Method #Params (M) #MAdds (M) Acc. (%) Model Method #Params (M) #MAdds (M) Acc. (%)
Top-1 Top-5

AmoebaNet† [?]

/

3.2 - 96.73 AmoebaNet [?]

/

5.1 555 74.5 92.0
PNAS† [?] 3.2 - 96.67 PNAS [?] 5.1 588 74.2 91.9
SNAS† [?] 2.9 - 97.08 SNAS [?] 4.3 522 72.7 90.8
GHN† [?] 5.7 - 97.22 GHN [?] 6.1 569 73.0 91.3

ENAS† [?]
/ 4.6 804 97.11

ENAS [?]
/ 5.6 679 73.8 91.7

NAO [?] 4.5 763 97.05 NAO [?] 5.5 656 73.7 91.7
NAT 4.6 804 97.24 NAT 5.6 679 73.9 91.8

DARTS† [?]
/ 3.3 533 97.06

DARTS [?]
/ 5.9 595 73.1 91.0

NAO [?] 3.5 577 97.09 NAO [?] 6.1 627 73.3 91.1
NAT 3.0 483 97.28 NAT 3.9 515 74.4 92.2

NAONet† [?]
/ 128 66016 97.89

NAONet [?]
/ 11.35 1360 74.3 91.8

NAO [?] 143 73705 97.91 NAO [?] 11.83 1417 74.5 92.0
NAT 113 58326 98.01 NAT 8.36 1025 74.8 92.3

4.1 Implementation Details

We consider two kinds of cells in a deep network, including the normal cell and the reduction cell. The
normal cell preserves the same spatial size as inputs while the reduction cell reduces the spatial size
by 2×. Both the normal and reduction cells contain 2 input nodes and a number of intermediate nodes.
During training, we build the deep network by stacking 8 basic cells and train the transformer for 100
epochs. We set m = 1, n = 1, and λ = 0.003 in the training. We split CIFAR-10 training set into
40% and 60% slices to train the model parameters w and the transformer parameters θ, respectively.
As for the evaluation of the networks with different architectures, we replace the original cell with the
optimized one and train the model from scratch. Please see more details in the supplementary. For all
the considered architectures, we follow the same settings of the original papers. In the experiments,
we only apply cutout to the NAS based architectures on CIFAR-10.

4.2 Results on Hand-crafted Architectures

In this experiment, we apply NAT on three popular hand-crafted models, i.e., VGG [?], ResNet [?],
and MobileNet [?]. To make all architectures share the same graph representation method defined
in Section 3.2, we add null connections into the hand-crafted architectures to ensure that each node
has two input nodes (See examples in Figure 3). For a fair comparison, we build deep networks
using the original and optimized architectures while keeping the same depth and number of channels

7

• Results on NAS based architectures (comparisons on ImageNet)
Table 4: Comparison of the optimized architectures obtained by different methods based on NAS
based architectures. “-” denotes that the results are not reported. “/” denotes the original models that
are not changed by architecture optimization methods. † denotes the models trained with cutout.

Model Method #Params (M) #MAdds (M) Acc. (%)
Top-1 Top-5

AmoebaNet [34]

/

5.1 555 74.5 92.0
PNAS [28] 5.1 588 74.2 91.9
SNAS [48] 4.3 522 72.7 90.8
GHN [52] 6.1 569 73.0 91.3

ENAS [33]
/ 5.6 679 73.8 91.7

NAO 5.5 656 73.7 91.7
NAT 5.6 679 73.9 91.8

DARTS [29]
/ 5.9 595 73.1 91.0

NAO 6.1 627 73.3 91.1
NAT 3.9 515 74.4 92.2

NAONet [31]
/ 11.35 1360 74.3 91.8

NAO 11.83 1417 74.5 92.0
NAT 8.36 1025 74.8 92.3

Table 5: Performance comparison of the architectures obtained by different methods on CIFAR-10.
The reported accuracy (%) is the average performance of five runs with different random seeds. “/”
denotes the original models that are not changed by architecture optimization methods. † denotes the
models trained with cutout.

Method VGG ResNet20 MobileNetV2 ENAS† DARTS† NAONet†

/ 93.56 91.37 94.47 97.11 97.06 97.89
Random Search 93.17 91.56 94.38 96.58 95.17 96.31

LSTM 94.45 92.19 95.01 97.05 97.05 97.93
Maximum-GCN 94.37 92.57 94.87 96.92 97.00 97.90

Sampling-GCN (Ours) 95.93 92.97 95.13 97.21 97.26 97.99

leading to fewer number of parameters. While optimizing ENAS, NAT removes the average pooling
operation and improves the performance without introducing extra computations.

4.4 Comparison of Different Policy Learners and Different Inference Methods

We conduct more experiments on CIFAR-10 to compare the performance with different policy
learners, such as Random Search, LSTM, and GCN, and different inference methods, i.e., sampling
based and maximum-probability based methods. For the Random Search method, we perform random
transitions among O, S, and N on the input architectures. From Table 5, Maximum-GCN represents
to derive the architecture by selecting the operation with the maximum probability, and Sampling-
GCN represents conducting sampling according to the probability distribution. Our Sampling-GCN
method outperforms all the considered policies and inference methods on different architectures.

4.5 Effect of Different Graph Representations for Hand-crafted Architectures

In this experiment, we investigate the effect of different graph representations on NAT. Note that an
architecture may correspond to many different topological graphs, especially for the hand-crafted
architectures, e.g., VGG and ResNet, where the number of nodes is smaller than that of our basic cell.
For convenience, we study three different graphs for VGG and ResNet20, respectively. The average
accuracy of NAT-VGG is 95.83% and outperforms the baseline VGG with the accuracy of 93.56%.
Similarly, our NAT-ResNet20 yields the average accuracy of 92.48%, which is also better than the
original model. We put the architecture and the performance of each possible representation in the
supplementary. In practice, the graph representation may influence the result of NAT and how to
alleviate its effect still remains an open question.

9

VISUALIZATION OF ARCHITECTURES
• Architecture optimization results on hand-crafted architectures

Table 1: Performance comparison of the optimized architectures obtained by different methods based
on hand-crafted architectures. “/” denotes the original models that are not changed by architecture
optimization methods.

CIFAR-10 ImageNet

Model Method #Params (M) #MAdds (M) Acc. (%) Model Method #Params (M) #MAdds (M) Acc. (%)
Top-1 Top-5

VGG16
/ 15.2 313 93.56

VGG16
/ 138.4 15620 71.6 90.4

NAO[31] 19.5 548 95.72 NAO [31] 147.7 18896 72.9 91.3
NAT 15.2 313 96.04 NAT 138.4 15620 74.3 92.0

ResNet20
/ 0.3 41 91.37

ResNet18
/ 11.7 1580 69.8 89.1

NAO [31] 0.4 61 92.44 NAO [31] 17.9 2246 70.8 89.7
NAT 0.3 41 92.95 NAT 11.7 1580 71.1 90.0

ResNet56
/ 0.9 127 93.21

ResNet50
/ 25.6 3530 76.2 92.9

NAO [31] 1.3 199 95.27 NAO [31] 34.8 4505 77.4 93.2
NAT 0.9 127 95.40 NAT 25.6 3530 77.7 93.5

MobileNetV2
/ 2.3 91 94.47

MobileNetV2
/ 3.4 300 72.0 90.3

NAO [31] 2.9 131 94.75 NAO [31] 4.5 513 72.2 90.6
NAT 2.3 91 95.17 NAT 3.4 300 72.5 91.0

View of Graph View of Network
VGG Cell

VGG

NAT-VGG -2 -1 out

ResNet

NAT-ResNet

Residual Cell

-2 -1 out

Architecture

MobileNetV2 Cell

-2 -1 out

MobileNetV2

NAT-MobileNetV2

Figure 3: Architecture optimization results of hand-crafted architectures. We provide both the views
of graph (left) and network (right) to show the differences in architecture.

During training, we build the deep network by stacking 8 basic cells and train the transformer for 100
epochs. We set m = 1, n = 1, and λ = 0.003 in the training. We split CIFAR-10 training set into
40% and 60% slices to train the model parameters w and the transformer parameters θ, respectively.
As for the evaluation of the networks with different architectures, we replace the original cell with the
optimized one and train the model from scratch. Please see more details in the supplementary. For all
the considered architectures, we follow the same settings of the original papers. In the experiments,
we only apply cutout to the NAS based architectures on CIFAR-10.

4.2 Results on Hand-crafted Architectures

In this experiment, we apply NAT on three popular hand-crafted models, i.e., VGG [40], ResNet [13],
and MobileNet [36]. To make all architectures share the same graph representation method defined
in Section 3.2, we add null connections into the hand-crafted architectures to ensure that each node
has two input nodes (See examples in Figure 3). For a fair comparison, we build deep networks
using the original and optimized architectures while keeping the same depth and number of channels
as the original models. As shown in Table 1, our NAT based models consistently outperform the
original models by a large margin. Moreover, we also show the original and optimized architectures
in Figure 3. The results show that our NAT is able to improve the hand-crafted model by optimizing

7

Figure 1: Visualization of some optimized hand-crafted architectures

• Architecture optimization results on NAS based architectures

Table 2: Comparison of the optimized architectures obtained by different methods based on NAS
based architectures. “-” denotes that the results are not reported. “/” denotes the original models that
are not changed by architecture optimization methods. † denotes the models trained with cutout.

CIFAR-10 ImageNet

Model Method #Params (M) #MAdds (M) Acc. (%) Model Method #Params (M) #MAdds (M) Acc. (%)
Top-1 Top-5

AmoebaNet† [34]

/

3.2 - 96.73 AmoebaNet [34]

/

5.1 555 74.5 92.0
PNAS† [28] 3.2 - 96.67 PNAS [28] 5.1 588 74.2 91.9
SNAS† [48] 2.9 - 97.08 SNAS [48] 4.3 522 72.7 90.8
GHN† [52] 5.7 - 97.22 GHN [52] 6.1 569 73.0 91.3

ENAS† [33]
/ 4.6 804 97.11

ENAS [33]
/ 5.6 679 73.8 91.7

NAO [31] 4.5 763 97.05 NAO [31] 5.5 656 73.7 91.7
NAT 4.6 804 97.24 NAT 5.6 679 73.9 91.8

DARTS† [29]
/ 3.3 533 97.06

DARTS [29]
/ 5.9 595 73.1 91.0

NAO [31] 3.5 577 97.09 NAO [31] 6.1 627 73.3 91.1
NAT 3.0 483 97.28 NAT 3.9 515 74.4 92.2

NAONet† [31]
/ 128 66016 97.89

NAONet [31]
/ 11.35 1360 74.3 91.8

NAO [31] 143 73705 97.91 NAO [31] 11.83 1417 74.5 92.0
NAT 113 58326 98.01 NAT 8.36 1025 74.8 92.3

NAT-ENAS

ENAS

NAT-DARTS

DARTS

Normal cell Reduction cellArchitecture

NAT-NAONet

NAONet

Figure 4: Architecture optimization results on the architectures of NAS based architectures.

the connections without introducing additional computations. For further comparison, we compare
NAT with a strong baseline method Neural Architecture Optimization (NAO) [31]. From Table 1,
although the models with NAO yield better performance than the original ones, they often have more
parameters and higher computational cost. By contrast, the resultant NAT-VGG, NAT-ResNet, and
NAT-MobileNetV2 significantly outperform the original models.

8

Figure 2: Visualization of some optimized NAS-based architectures

CONTACT INFORMATION AND CODE

• Email: mingkuitan@scut.edu.cn

• Code: https://github.com/guoyongcs/NAT

