
������� 
�� �	��
� ��
�����������
����
�����
���������� NeurIPS 2019 1

NAT: Neural Architecture Transformer for 
Accurate and Compact Architectures

Yong Guo1*, Yin Zheng2*, Mingkui Tan1*†, Qi Chen1, 

Jian Chen1†, Peilin Zhao3, Junzhou Huang3,4

Published in NeurIPS 2019

1South China University of Technology
2Weixin Group, Tencent 3Tencent AI Lab

4University of Texas at Arlington



Mingkui Tan (SCUT) NAT: Neural Architecture Transformer NeurIPS 2019

Contents

2

1. Background

2. Proposed Method

3. Experimental Results

4. Conclusion



Mingkui Tan (SCUT) NAT: Neural Architecture Transformer NeurIPS 2019

Contents

3

1. Background

2. Proposed Method

3. Experimental Results

4. Conclusion



Mingkui Tan (SCUT) NAT: Neural Architecture Transformer NeurIPS 2019

Background

Deep neural networks have achieved great success in many computer vision tasks, 
such as image classification, face recognition, object detection, etc.

Image Classification Object DetectionFace Recognition

Taylor Swift

Figure: Applications of deep neural networks.
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Neural Architecture Design

1. Hand-crafted architectures

2. Automatically searched architectures

n Neural architecture design is one of the key factors behind the 

success of deep neural networks.

n Existing architectures can be divided into two categories:
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Hand-crafted Architectures

Several widely used hand-crafted architectures:

Limitations of hand-crafted architecture design process

n Hand-crafted methods rely on substantial human expertise.

n Hand-crafted methods cannot fully explore the whole architecture space.

VGG ResNet MobileNetV2

1x1 conv, Relu 6

3x3 dwise, Relu 6

1x1 conv, Linear
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Automatically Searched Architectures

7

Limitations of NAS methods

n Search space is extremely large, e.g., billions of candidate architectures.

n NAS methods may find suboptimal architectures with limited performance.

n There is a growing interest to replace the manual process of architecture 

design by Neural Architecture Search (NAS).

DARTS normal cell

Graph Representation of Architectures: an architecture 
can be represented by a directed acyclic graph (DAG).

Ø Node: feature maps of a specific layer

Ø Edge: a computational operation, e.g., convolution
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Architecture Optimization

Since both the hand-crafted and NAS based architectures are not 

optimal, can we optimize architectures to obtain the better ones?

Existing architecture

Architecture optimizer

Optimized architecture

n One can design architecture optimization methods to optimize 

existing architectures for better performance.

Figure: Architecture optimization scheme.
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Existing Architecture Optimization Methods
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Limitations of NAO

n NAO may introduce extra parameters or additional computational cost.

n NAO has a NAS search space that is unnecessarily huge and expensive to train.

n Neural Architecture Optimization (NAO)
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Motivation

n Both hand-crafted architectures and NAS based architectures may 

contain non-significant or redundant operations.

n Existing architecture optimization methods may introduce extra 

parameters or additional computational cost into the architectures.

How to transform the redundant operations in any arbitrary architecture to 

improve the performance without introducing extra computational cost?
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Problem Definition

Our goal: Transforming any arbitrary architecture for 
better performance and less computational cost.

One solution: Replacing the redundant operations with 
the more efficient ones.

n We have c(O)>c(S)>c(N), where c (·) evaluates the computational cost.
n To reduce the computational cost, we allow the transitions: OàS, OàN, SàN. 
n Since skip connection has negligible cost but often can significantly improve 

the performance, we also allow NàS.

n We divide the operations into three categories {S, N, O}. S denotes skip 
connection, N denotes null connection, O denotes the other operations.

Figure: Operation transformation scheme.
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Optimization for Arbitrary Architecture

Given any arbitrary architecture           , we seek to find the corresponding optimal

architecture     . Then, the optimization problem can be formulated as α

n denotes the performance improvement between the optimized 

architectures  and the given architectures . and are the parameters of and .

n is a function to measure the computation cost of architectures.

n is an upper bound of the computational cost.

αwα
wβα

c(⋅)

κ

! !
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Optimization for Arbitrary Architecture

where                                        denotes the expectation of over the distribution of 

and the distribution of .

n It is non-trivial to directly obtain the optimal .

n We instead sample     from the well learned policy, denoted by                 , i.e.,                       .

To learn the policy, we solve the following optimization problem:

max
θ
Eβ~p(⋅)[Eα~π (⋅|β ;θ )

R(α | β)], s.t. c(α) ≤ κ ,α ∼ π(⋅ | β;θ)

Eβ~p(⋅)[Eα~π (⋅|β ;θ )R(α | β)] R(α | β)

β~p(⋅) α ∼ π(⋅ | β;θ)

α

α α ∼ π(⋅ | β;θ)α ∼ π(⋅ | β;θ)
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Optimization for Arbitrary Architecture

max
θ
Eβ~p(⋅)[Eα~π (⋅|β ;θ )

R(α | β)], s.t. c(α) ≤ κ ,α ∼ π(⋅ | β;θ)

n It is hard to find a comprehensive measure to accurately evaluate the cost.

n The upper bound of computational cost     is hard to determine.

Several challenges regarding the optimization problem

κ
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Markov Decision Process for Learning NAT

Our solution

n We cast the optimization problem into an architecture transformation 

problem and reformulate it as a Markov decision process (MDP).

n We seek to optimize architectures by making a series of decisions to replace 

redundant operations with the more computationally efficient operations.

Benefits: We do not have to evaluate the cost

or determine the upper bound to obtain an 

architecture with less computational cost.

c(α)

κ

Figure: Operation transformation scheme.
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Markov Decision Process for Learning NAT

Details of MDP

n An architecture is defined as a state.

n A transformation mapping is defined as an action.

n The accuracy improvement on validation set is regraded as reward. 

n The policy parameterized by is the probability distribution of the action.

β → α

π(⋅ | β;θ) θ

Based on MDP, how to build a model to learn the optimal policy ?π
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Policy Learning by Graph Convolution Networks

To better exploit the adjacency information of the operations in an architecture, we 

use a two-layer graph convolutional network (GCN) to build the controller:

Notations

n : adjacency matrix of the architecture graph.

n : attributes of the nodes in the graph.

n and         : weights of two graph convolution layers.

n : weight of the fully-connected layer.

n : non-linear activation function.

n : probability distribution of different candidate operations, i.e., the learned policy.

A

X

W(0) W(1)

σ

Z

WFC
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Training Method

We train the transformer parameters θ and the model parameter w in an alternative way.

n Training the model parameters w :

where is the cross-entropy loss, is the learning rate.

n Training the transformer parameters θ :
To encourage exploration, we introduce an entropy regularization term:

where H(·) evaluates the entropy of the policy, and  λ controls the  strength of the 
entropy regularization term.

L(⋅) η
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Training Method
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Visual Results of Hand-crafted Architectures

l Results on several hand-crafted architectures, including VGG, ResNet, and MobileNet.

Ø NAT introduces additional skip connections to improve the performance.
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Visual Results of Hand-crafted Architectures

Ø NAT introduces additional skip connections to improve the performance.

l Results on several hand-crafted architectures, including VGG, ResNet, and MobileNet.
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Comparison on Hand-crafted Architectures

Ø NAT based models yield significantly better performance with approximately 

the same computational cost as the baseline models.

l Results on several hand-crafted architectures, including VGG, ResNet, and MobileNet.
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Visual Results on NAS based Architectures

l Results on several NAS based architectures, including ENAS, DARTS, and NAONet.

NAT-DARTS

DARTS

Normal cell Reduction cellArchitecture

NAT-ENAS

ENAS

Normal cell Reduction cellArchitecture

Ø NAT replaces several redundant operations with the skip connections or 

directly removes the connections to reduce computation cost.
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Visual Results on NAS based Architectures

NAT-NAONet

NAONet

Normal cell Reduction cellArchitecture

l Results on several NAS based architectures, including ENAS, DARTS, and NAONet.

Ø NAT replaces several redundant operations with the skip connections or 

directly removes the connections to reduce computation cost.
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Comparison on NAS based Architectures

Ø NAT based models yield significantly better performance with less or comparable 

computational cost as the baseline models.

l Results on several NAS based architectures, including ENAS, DARTS, and NAONet.
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Comparison of Different Policy Learners

l We compare several policy learners, including Random Search, LSTM, and 

two GCN based methods.

Ø Our Sampling-GCN method significantly outperforms the other methods.
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Conclusion

n We propose a novel Neural Architecture Transformers (NAT) to optimize any 

arbitrary architectures for better performance without extra computational cost.

n We cast the problem into a Markov decision process (MDP) and employ graph 

convolutional network (GCN) to learn the optimal policy.

n Extensive experiments show the effectiveness of NAT on both hand-crafted and 

NAS based architectures.
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