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Background

Deep neural networks have achieved great success in many computer vision tasks,
such as image classification, face recognition, object detection, etc.
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Figure: Applications of deep neural networks.
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Neural Architecture Design

B Neural architecture design is one of the key factors behind the

success of deep neural networks.

B Existing architectures can be divided into two categories:
1. Hand-crafted architectures

2. Automatically searched architectures
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Hand-crafted Architectures

Several widely used hand-crafted architectures:
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Limitations of hand-crafted architecture design process

B Hand-crafted methods rely on substantial human expertise.

B Hand-crafted methods cannot fully explore the whole architecture space.
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Automatically Searched Architectures

B There is a growing interest to replace the manual process of architecture

design by Neural Architecture Search (NAS).

Graph Representation of Architectures: an architecture
can be represented by a directed acyclic graph (DAG).

> Node: feature maps of a specific layer

» Edge: a computational operation, e.g., convolution
DARTS normal cell

Limitations of NAS methods

B Search space is extremely large, e.g., billions of candidate architectures.

B NAS methods may find suboptimal architectures with limited performance.
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Architecture Optimization

Since both the hand-crafted and NAS based architectures are not

optimal, can we optimize architectures to obtain the better ones?

B One can design architecture optimization methods to optimize

existing architectures for better performance.

Architecture optimizer

[Existing architecture} [Optimized architecture}

Figure: Architecture optimization scheme.
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Existing Architecture Optimization Methods

B Neural Architecture Optimization (NAO)
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Limitations of NAO

B NAO may introduce extra parameters or additional computational cost.

B NAO has a NAS search space that is unnecessarily huge and expensive to train.
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B Both hand-crafted architectures and NAS based architectures may
contain non-significant or redundant operations.
B Existing architecture optimization methods may introduce extra

parameters or additional computational cost into the architectures.

How to transform the redundant operations in any arbitrary architecture to

improve the performance without introducing extra computational cost?
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Problem Definition

Our goal: Transforming any arbitrary architecture for a
better performance and less computational cost. ‘
One solution: Replacing the redundant operations with ‘@_Q)

the more efficient ones. Figure: Operation transformation scheme.

B We divide the operations into three categories {S, N, O}. S denotes skip
connection, N denotes null connection, O denotes the other operations.

B We have ¢(0)>c(S)>c(N), where ¢ (-) evaluates the computational cost.
B To reduce the computational cost, we allow the transitions: 02> S, O2>N, S>N.

B Since skip connection has negligible cost but often can significantly improve
the performance, we also allow N> S.
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Optimization for Arbitrary Architecture

Given any arbitrary architecture B~p(-), we seek to find the corresponding optimal

architecture « . Then, the optimization problem can be formulated as

max Cap() B (afB)], st cla) < K

B R(a|B) = R(o,ws) — R(B,wg) denotes the performance improvement between the optimized
architectures o and the given architectures . w, and w; are the parameters of oo and 3.
B c(-)is a function to measure the computation cost of architectures.

B KX isan upper bound of the computational cost.
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Optimization for Arbitrary Architecture

max Egp.) R(a|f)], st. cla) <k

B [tis non-trivial to directly obtain the optimal c.

B We instead sample a from the well learned policy, denoted by 7(-| 5;0), ie, o ~ z(- | B;6).

To learn the policy, we solve the following optimization problem:

maxE, (B .. Rlo|p)),st. clo) <Ko~ (| B;0)

4] B~p(:)

where E ﬂ~p(_)[EM(.| ﬁ;Q)R(a | B)] denotes the expectation of R(« | B) over the distribution of

B~p(-) and the distribution of & ~ z(-| B;0).
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Optimization for Arbitrary Architecture

E R(a| B)], s.t. cla) < x,0 ~ (- | B;0)

max [

0 ﬁ~p(-)[ a-n({B:0)

Several challenges regarding the optimization problem

B |t is hard to find a comprehensive measure to accurately evaluate the cost.

B The upper bound of computational cost x is hard to determine.
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Markov Decision Process for Learning NAT

Our solution
B We cast the optimization problem into an architecture transformation
problem and reformulate it as a Markov decision process (MDP).
B We seek to optimize architectures by making a series of decisions to replace

redundant operations with the more computationally efficient operations.

G
Benefits: We do not have to evaluate the cost c()

or determine the upper bound K to obtain an

architecture with less computational cost. ‘ m)

Figure: Operation transformation scheme.
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Markov Decision Process for Learning NAT

Details of MDP

B An architecture is defined as a state.

B A transformation mapping 8 — « is defined as an action.
B The accuracy improvement on validation set is regraded as reward.

B The policy z(-| 8;0) parameterized by 6 is the probability distribution of the action.
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Policy Learning by Graph Convolution Networks

To better exploit the adjacency information of the operations in an architecture, we

use a two-layer graph convolutional network (GCN) to build the controller:

Z = f(X, A) = Softmax (Ac (AXW® ) WO WFC)

A : adjacency matrix of the architecture graph.

X : attributes of the nodes in the graph.
w® and w® : weights of two graph convolution layers.
wre : weight of the fully-connected layer.

o : non-linear activation function.

Z : probability distribution of different candidate operations, /e, the learned policy.
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Training Method

We train the transformer parameters 6 and the model parameter w in an alternative way.
B Training the model parameters w :
W 4— w — 77% S V(B w)
where L(-) is the cross-entropy loss, 77 is the learning rate.

B Training the transformer parameters 6 :
To encourage exploration, we introduce an entropy regularization term:
J(0) = Egp(y [Eamn(gi0) [R (2, w) — R (B, w)] + AH (7 (- 8;6))]

=" p(8) | > 7(alB;0) (R (0, w) — R(B,w)) + AH (x(|5;6))
IB (87

where H(-) evaluates the entropy of the policy, and A1 controls the strength of the
entropy regularization term.
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Training Method

Algorithm 1 Training method for Neural Architecture Transformer (NAT).

1: Initiate w and 6.

2: while not convergent do
3 for each iteration on training data do

4 Sample 3; ~ p(-) to construct a batch {3; };;.

5: Update the model parameters w by descending the gradient.
6: end for
7
8
9

for each iteration on validation data do
Sample 3; ~ p(-) to construct a batch {3; };;.
Obtain {a; };—; according to the policy learned by GCN.
10: Update the parameters 6 by ascending the gradient.
11:  end for
12: end while
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Visual Results of Hand-crafted Architectures

® Results on several hand-crafted architectures, including VGG, ResNet, and MobileNet.

Architecture View of Graph View of Network
null VGG Cell
null - g —
VGG
NAT-VGG
. skip _connect skip connect
ResNet null conv_3x3 skip_connect : =
A.. com 3597
skip connect
NAT-ResNet conv_3x3 skip_connect : >
skip_connect 1 conv_3x3
skip _connect [

» NAT introduces additional skip connections to improve the performance.
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Visual Results of Hand-crafted Architectures

® Results on several hand-crafted architectures, including VGG, ResNet, and MobileNet.
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» NAT introduces additional skip connections to improve the performance.
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Comparison on Hand-crafted Architectures

® Results on several hand-crafted architectures, including VGG, ResNet, and MobileNet.

CIFAR-10 ImageNet
Model Method  #Params (M) #MAdds (M) Acc. (%) Model Method  #Params (M) #MAdds (M) Topéclc' ({'{i}) )p- 3
/ 15.2 313 93.56 / 138.4 15620 71.6  90.4
VGG16 NAO[32] 19.5 548 95.72 VGGI16 NAO [32] 147.7 18896 729 913
NAT 15.2 315 96.04 NAT 138.4 15693 74.3  92.0
/ 0.3 41 91.37 / 11.7 1580 69.8 89.1
ResNet20 NAO [32] 0.4 61 92.44 ResNet18 NAO [32] 17.9 2246 70.8 89.7
NAT 0.3 42 92.95 NAT 11.7 1588 71.1  90.0
/ 0.9 127 93.21 / 25.6 3530 76.2 929
ResNet56 NAO [32] 1.3 199 95.27 ResNet50 NAO [32] 34.8 4505 774  93.2
NAT 0.9 129 95.40 NAT 25.6 3547 777 93.5
/ 2.3 91 94.47 / 34 300 72.0 903
MobileNetV2  NAO [32] 29 131 94.75 MobileNetV2  NAO [32] 4.5 513 722 90.6
NAT 2.3 92 95.17 NAT 34 302 72.5 910

» NAT based models yield significantly better performance with approximately

the same computational cost as the baseline models.
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Visual Results on NAS based Architectures

® Results on several NAS based architectures, including ENAS, DARTS, and NAONet.
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» NAT replaces several redundant operations with the skip connections or

directly removes the connections to reduce computation cost.
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Visual Results on NAS based Architectures

® Results on several NAS based architectures, including ENAS, DARTS, and NAONet.
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» NAT replaces several redundant operations with the skip connections or

directly removes the connections to reduce computation cost.
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Comparison on NAS based Architectures

® Results on several NAS based architectures, including ENAS, DARTS, and NAONet.

CIFAR-10 ImageNet
Model Method  #Params (M) #MAdds (M) Acc. (%) Model Method  #Params (M) #MAdds (M) TOP‘)A‘_CIC' (}'/‘(’))p_s
AmocbaNet! [37] 32 : 96.73 | AmocbaNet [37] 5.1 555 745 920
PNAST [29] ) 32 i 96.67 PNAS [29] ) 5.1 588 742 91.9
SNAST [50] 2.9 i 97.08 SNAS [50] 43 520 727 90.8
GHN' [54] 5.7 i 97.22 GHN [54] 6.1 569 73.0 913
7 46 304 9711 7 5.6 679 738 917
ENAST [36]  NAO [32] 45 763 97.05 ENAS [36]  NAO [32] 5.5 656 737 917
NAT 4.6 804 97.24 NAT 5.6 679 73.9  9L8
7 33 533 97.06 7 59 595 731 91.0
DARTS! [30]  NAO [32] 35 577 97.09 DARTS [30]  NAO [32] 6.1 627 733 91.1
NAT 3.0 483 97.28 NAT 3.9 515 744 922
7 128 66016 97.89 7 1135 1360 743 918
NAONet! [32]  NAO [32] 143 73705 9791 | NAONet[32] NAO[32] 11.83 1417 745 920
NAT 113 58326 98.01 NAT 8.36 1025 748 923

> NAT based models yield significantly better performance with less or comparable

computational cost as the baseline models.
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Comparison of Different Policy Learners

® We compare several policy learners, including Random Search, LSTM, and

two GCN based methods.

Method VGG16 ResNet20 MobileNetV2 ENAST  DARTST NAONet!
/ 03.56 91.37 04.47 97.11 97.06 97.89
Random Search 03.17 91.56 94.38 96.58 95.17 96.31
LSTM 04.45 92.19 95.01 97.05 97.05 97.93
Maximum-GCN 04.37 02.57 04.87 96.92 97.00 97.90
Sampling-GCN (Ours) 95.93 92.97 95.13 97.21 97.26 97.99

» Our Sampling-GCN method significantly outperforms the other methods.
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Conclusion

B We propose a novel Neural Architecture Transformers (NAT) to optimize any

arbitrary architectures for better performance without extra computational cost.

B We cast the problem into a Markov decision process (MDP) and employ graph

convolutional network (GCN) to learn the optimal policy.

B Extensive experiments show the effectiveness of NAT on both hand-crafted and

NAS based architectures.
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