

Improving Robustness of Vision Transformers by Reducing Sensitivity to Patch Corruptions

CVPR 2023 Session and Poster ID: TUE-AM-392

Yong Guo, David Stutz, Bernt Schiele

Max Planck Institute for Informatics

Overview

Motivation:

- ViTs are often more robust than CNNs but still remain very vulnerable against corruptions and perturbations.
- We seek to understand the vulnerability of ViTs by investigating the stability of self-attention mechanism.
- ViTs are inherently patch-based models.

Idea & Method:

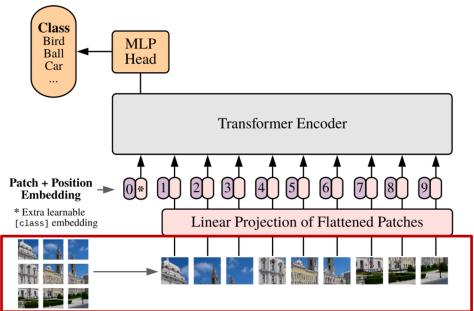
- We explicitly study the sensitivity to patch corruptions/perturbations.
- We propose a new method to improve robustness by <u>Reducing Sensitivity to Patch Corruptions (RSPC)</u>.
 - Finding particular vulnerable patches to introduce corruptions
 - Aligning the features between the clean and corrupted examples

Results:

- The robustness improvement against patch corruptions can generalize well to diverse architectures on various robustness benchmarks.
- We can show, both qualitatively and quantitatively, that these improvements stem from the **more stable attention mechanism across layers**.

Background & Motivation

- ViTs are often more robust than CNNs but still remain very vulnerable against corruptions and perturbations.
- We seek to understand the vulnerability of ViTs by investigating the stability of self-attention mechanism.



Vision Transformer (ViT)

Since ViTs are inherently patch-based, we explicitly study the **sensitivity to patch corruptions/perturbations**.

Sensitivity to Patch Perturbations/Corruptions

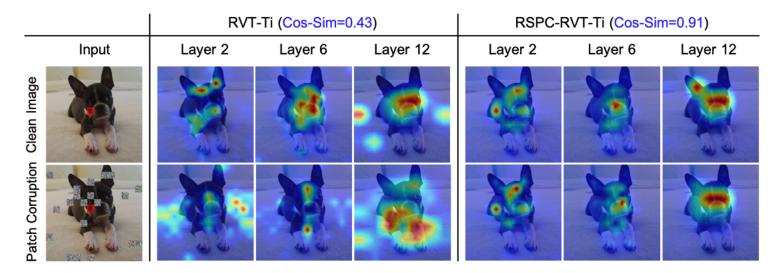
Experimental settings:

- Randomly sample a small number of patches to be perturbed/corrupted (10%, keeping the mask fixed)
- Introduce different perturbations and corruptions into the selected patches

- Transformers are very sensitive to patch perturbations
 - Transformers can be easily misled by the adversarial perturbations only on very few patches
 - Nevertheless, generating adversarial perturbations and training against them is very expensive.
- Directly introducing corruptions only yields marginal degradation in terms of confidence score
 - Introducing corruptions is much more efficient but not very effective
- Occluding patches with noise can significantly hamper the prediction
 - A good proxy of adversarial patch perturbations

Sensitivity of ViT to Patch-based Corruptions

• We construct the patch-based corruptions (by occluding a small number of patches with noise, e.g., 10%) and study how the attention maps would change in each layer.

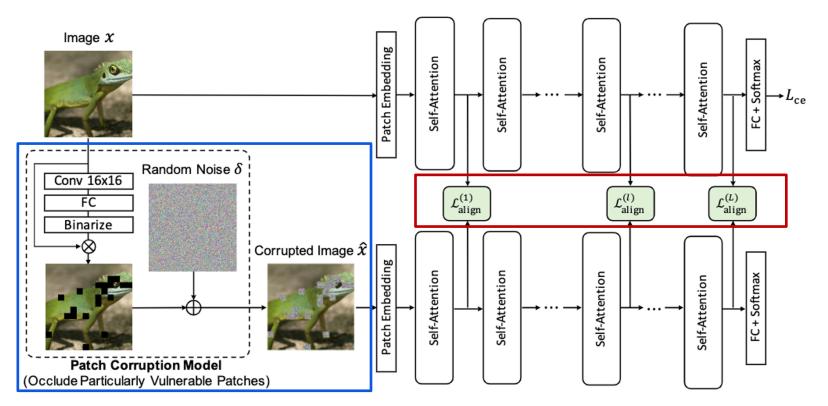


The self-attention mechanism is very sensitive to patch-based corruptions, which could be a major reason for the lack of robustness.

Proposed Method

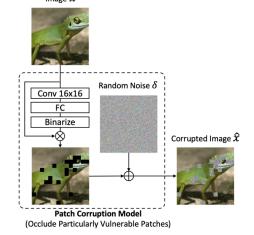
We seek to reduce the sensitivity of self-attention layers against patch corruptions.

- Finding particular vulnerable patches to introduce corruptions
- Aligning the features between the clean and corrupted examples



Finding Vulnerable Patches to be Corrupted

Patch Corruption Model



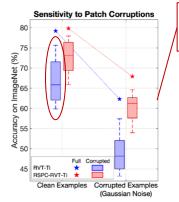
Notations: x: clearn sample \hat{x} : occluded sample C: occlusion model ρ : occlusion ratio

 $\hat{x} = \mathcal{C}(x; \rho) \cdot x + (1 - \mathcal{C}(x; \rho)) \cdot \delta$

- Conv: extract features for each patch (patch size=16x16)
- Binarize: select the top ρ % patches and produce a binary map

Making it differentiable with the Straight Through Estimator (STE)

Find the patches that changes the intermediate features most:



Vary large variance: some patches greatly affect the performance while the others may not

 $\mathcal{F}_{l}(*)$: features of the *l*-th layer

|2|

$$\max_{\mathcal{C}} \ \mathbb{E}_{x \sim \mathcal{D}} \ \mathcal{L}_{\text{align}}(x, \hat{x}),$$

where $\mathcal{L}_{\text{align}}(x, \hat{x}) = \frac{1}{L} \sum_{l=1}^{L} \|\mathcal{F}_{l}(x) - \mathcal{F}_{l}(\hat{x})\|$

7

Reducing Patch Sensitivity via Feature Alignment

$$\min_{\mathcal{F}} \max_{\mathcal{C}} \mathbb{E}_{x \sim \mathcal{D}} [\mathcal{L}_{ce}(x) + \lambda \mathcal{L}_{align}(x, \hat{x})]$$

Adversarial objective

- Maximize the loss to find vulnerable patches
- Minimize the loss to reduce patch sensitivity

Training both models using a single backpropagation

- Descend the gradient for the classification model ${\cal F}$
- Ascend the gradient for the patch corruption model \mathcal{C}

Algorithm 1 Training transformer models by reducing sensitivity to patch corruptions (RSPC).

Require: Training data \mathcal{D} , model parameters $\theta_{\mathcal{C}}$ and $\theta_{\mathcal{F}}$, occlusion ratio ρ , step size η , hyper-parameter λ .

- 1: for each training iteration do
- 2: Sample a data batch $\{x_i\}_{i=1}^N$ from \mathcal{D}
- 3: //Construct patch-based corruptions \hat{x}
- 4: Sample the random noise δ from a uniform distribution
- 5: Construct \hat{x} using the patch corruption model C: $\hat{x} = C(x; \rho) \cdot x + (1 - C(x; \rho)) \cdot \delta$
- 6: //Update the classification model ${\cal F}$
- 7: Update $\theta_{\mathcal{F}}$ by descending the gradient: $\theta_{\mathcal{F}} = \theta_{\mathcal{F}} - \eta \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta_{\mathcal{F}}} \left[\mathcal{L}_{ce}(x_i) + \lambda \mathcal{L}_{align}(x_i, \hat{x}_i) \right]$ 8: // Update the patch corruption model \mathcal{C} 9: Update $\theta_{\mathcal{C}}$ by ascending the gradient: $\theta_{\mathcal{C}} = \theta_{\mathcal{C}} + \eta \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta_{\mathcal{C}}} \lambda \mathcal{L}_{align}(x_i, \hat{x}_i)$

10: end for

Comparisons on ImageNet

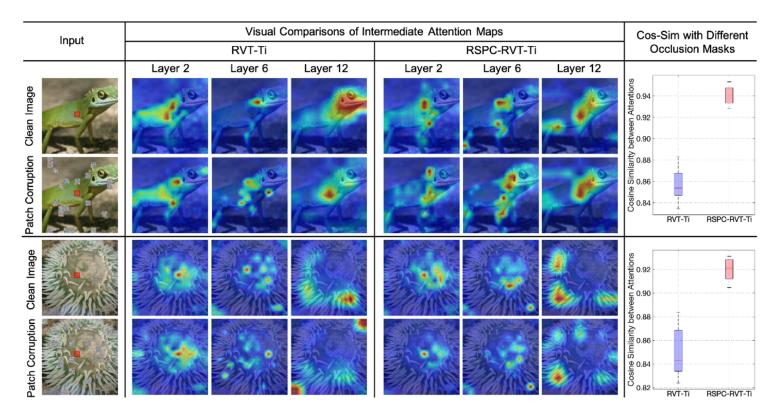
↔ Our RSPC models consistently improve the robustness across different model sizes on ImageNet.

Model		#FLOPs (G)	#Params (M)	ImageNet	Robustness Benchmarks			
					IN-A	IN-C \downarrow	IN-C w/o Noise↓	IN-P \downarrow
CNN	ResNet50 [19]	4.1	25.6	76.1	0.0	76.7	76.0	58.0
	Inception v3 [43]	5.7	27.2	77.4	10.0	80.6	82.0	61.3
	ANT [38]	4.1	25.6	76.1	1.1	63.0	64.3	53.2
	EWS [17]	4.1	25.6	77.3	5.9	58.7	60.2	30.9
	DeepAugment [20]	4.1	25.6	75.8	3.9	60.6	52.2	32.1
ViT-Tiny	DeiT-Ti [47]	1.3	5.7	72.2	7.3	71.1	72.9	56.7
	ConViT-Ti [11]	1.4	5.7	73.3	8.9	68.4	70.4	53.7
	PVT-Tiny [50]	1.9	13.2	75.0	7.9	69.1	70.0	60.1
	RVT-Ti [32]	1.3	10.9	79.2	14.6 (+0.0)	57.0 (-0.0)	58.9 (-0.0)	39.1 (-0.0)
	+ RSPC (Ours)	1.3	10.9	79.5	16.5 (+1.9)	55.7 (-1.3)	57.5 (-1.4)	38.0 (-1.1)
	FAN-T-Hybrid [59]	3.5	7.5	80.1	21.9 (+0.0)	58.3 (-0.0)	59.8 (-0.0)	38.3 (-0.0)
	+ RSPC (Ours)	3.5	7.5	80.3	23.6 (+1.7)	57.2 (-1.1)	58.4 (-1.4)	37.3 (-1.0)
ViT-Small	DeiT-S [47]	4.6	22.1	79.9	6.3	54.6	56.6	36.9
	ConViT-S [11]	5.4	27.8	81.5	18.9	49.8	52.1	35.8
	Swin-T [27]	4.5	28.3	81.2	21.6	62.0	64.2	38.3
	PVT-Small [50]	3.8	24.5	79.9	18.0	66.9	70.0	45.1
	T2T-ViT_t-14 [55]	6.1	21.5	81.7	23.9	53.2	54.4	36.2
	RVT-S [32]	4.7	23.3	81.9	25.7 (+0.0)	49.4 (-0.0)	51.6 (-0.0)	35.2 (-0.0)
	+ RSPC (Ours)	4.7	23.3	82.2	27.9 (+2.2)	48.4 (-1.0)	50.4 (-1.2)	34.3 (-0.9)
	FAN-S-Hybrid [59]	6.7	25.7	83.5	33.9 (+0.0)	48.5 (-0.0)	50.7 (-0.0)	34.5 (-0.0)
	+ RSPC (Ours)	6.7	25.7	83.6	36.8 (+2.9)	47.5 (-1.0)	49.4 (-1.3)	33.5 (-1.0)
ViT-Base	DeiT-B [47]	17.6	86.6	82.0	27.4	48.5	50.9	32.1
	ConViT-B [11]	17.7	86.5	82.4	29.0	46.9	49.3	32.2
	Swin-B [27]	15.4	87.8	83.4	35.8	54.4	57.0	32.7
	PVT-Large [50]	9.8	61.4	81.7	26.6	59.8	63.0	39.3
	T2T-ViT_t-24 [55]	15.0	64.1	82.6	28.9	48.0	49.3	31.8
	RVT-B [32]	17.7	91.8	82.6	28.5 (+0.0)	46.8 (-0.0)	49.8 (-0.0)	31.9 (-0.0)
	+ RSPC (Ours)	17.7	91.8	82.8	32.1 (+3.6)	45.7 (-1.1)	48.5 (-1.3)	31.0 (-0.8)
	FAN-B-Hybrid [59]	11.3	50.5	83.9	39.6 (+0.0)	46.1 (-0.0)	48.1 (-0.0)	31.3 (-0.0)
	+ RSPC (Ours)	11.3	50.5	84.2	41.1 (+1.5)	44.5 (-1.6)	46.8 (-1.3)	30.0 (-1.2)

10

Stability of Intermediate Attention Maps

✤ Our RSPC models obtain much more stable attention maps when facing patch corruptions.



Thanks for your attention !