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Vision transtormers (ViTs) are often more robust than CNNs but still remain very vulnerable against

CONTRIBUTIONS

* We propose a new training method that improves robustness by reducing sensitivity to patch
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RESULTS: IMPROVING CORRUPTION ROBUSTNESS

e Comparisons on ImageNet

corruptions and perturbations. corruptions (RSPC). To this end, we first construct effective patch-based corruptions and then Model #FLOPs (G) | #Params (M) | ImageNet | Hﬁf’é’fmesiﬁ_‘z‘ffgﬁjse . ey
e Since Vils are inherently patch-based, we explicitly study the sensitivity to patch corrup- reduce the sensitivity to them by aligning the intermediate features. DeiT-Ti [17] 1.3 5.7 72.2 7.3 711 72.9 56.7
>, | ConViT-Ti [l ] 1.4 5.7 73.3 8.9 68.4 70.4 53.7
tions/perturbations. * When constructing patch corruptions, we develop a patch corruption model to find particularly S | RVETi [] 1.3 10.9 792 | 146 (+0.0) | 57.0(-0.0) |  589(-0.0) | 39.1(-0.0)
, , , . , , = | +RSPC (Ours) 1.3 10.9 79.5 16.5 (+1.9) | 55.7 (-1.3) 57.5 (-1.4) 38.0 (-1.1)
e We randomly sample ad Small number Of patches to be perturbed/corrupted (100/0, keepmg the vulnerable patches that Severely distract intermediate attention layers. In pract1ce, the COr- > FAN-T-Hybrid [ ] 35 75 0.1 21.9 (+0.0) | 58.3 (-0.0) 59.8 (-0.0) 38.3 (-0.0)
. . . . ey . : . +RSPC (O 3.5 7.5 80.3 | 23.6 (+1.7) | 57.2(-1.1 58.4 (-1.4 37.3 (-1.0
mask f1xed) and mtroduee d1fferent Derturbatlons and corruptmns into the selected patches ruption model is trained adversarially to the classification model, which, however, is essentially STS [( ]“rs) T 57 001 6(_3 ) : 4(_6 ) z 6(_6 ) 36(_9 )
' ’ NN ' A \ ’ e . different from adversarial training methods ?g ConViT-5 [11] 5.4 21.8 81.5 18.9 49.8 >2.1 35.8
| | | | 5 | RVES ] 4.7 233 81.9 | 25.7 (+0.0) | 49.4 (-0.0) 51.6 (-0.0) 35.2 (-0.0)
* In experiments, we demonstrate that the robustness improvement against patch corruptions can ; + RSPC (Ours) 4.7 23.3 822 | 27.9(+2.2) | 48.4(-1.0) 50.4 (-1.2) 34.3 (-0.9)
. . . . = FAN-S-Hybrid [ /] 6.7 25.7 83.5 | 33.9 (+0.0) | 48.5 (-0.0) 50.7 (-0.0) 345 (-0.0)
generalize well to diverse architectures on various robustness benchmarks. More critically, we + RSPC (Ours) 6.7 25.7 83.6 | 36.8(+2.9) | 47.5(-1.0) | 494(-13) | 33.5(-1.0)
L L . MAE (ViT-B) [ ] 17.6 36.6 33.6 35.9 51.7 : i
can show, both qualitatively and quantitatively, that these improvements stem from the more ) DeiT_]g o ) 17 6 %6 6 23 0 7 4 48 5 50.9 191
: : 2 | ConVIiT-B [ 1] 17.7 86.5 82.4 29.0 46.9 49.3 32.2
stable attention mechanism across layers. 2 | RVTB [1/] 17.7 91.8 82.6 | 28.5(+0.0) | 46.8 (-0.0) 49.8 (-0.0) 31.9 (-0.0)
= | +RSPC (Ours) 17.7 91.8 82.8 | 32.1(+3.6) | 45.7 (-1.1) 48.5 (-1.3) 31.0 (-0.8)
FAN-B-Hybrid [ ] 1.3 50.5 83.9 | 39.6 (+0.0) | 46.1 (-0.0) 48.1 (-0.0) 31.3 (-0.0)
; iy amgol OF RSPC: REDUCING SENSITIVITYTO PATCH CORRUPTIONSS + RSPC (Ours) 11.3 50.5 84.2 | 411 (+15) | 44.5(-1.6) | 468(-1.3) | 30.0 (-1.2)
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e Directly introducing corruptions yields marginal degradation but is much more etficient.

Training Cost (hours with 32 GPUSs) Training Cost (hours with 32 GPUSs)

Training Cost (hours with 32 GPUs)

* Occluding patches with noise can significantly hamper the prediction.

Idea: Occluding patches with noise is a good proxy of adversarial patch perturbations.

VISUALIZATION RESULTS & MORE DISCUSSIONS

e Comparisons of attention stability

Corrupted Image X

Visual Comparisons of Intermediate Attention Maps
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SENSITIVITY OF VITS TO PATCH-BASED CORRUPTIONS

We seek to understand the vulnerability of ViTs by investigating the stability of the self-attention

mechanism against patch-based corruptions. )
RVT-Ti (Cos-Sim=0.43) RSPC-RVT-Ti (Cos-Sim=0.91) Sensifviy o Patch Somruptions
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Figure 2: Overview of our reducing sensitivity to patch corruptions (RSPC) training procedure.
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Figure 2: Sensitivity to patch corruptions in terms of attention stability (left) and accuracy (right). m}n max Do [Loo () + AMalign (2, 2)] (2) o )
Observations: The self-attention mechanism is very sensitive to patch-based corruptions, which ol _
0.3 0.4 0.5 0.6 0.1 0.8 0.9

could be a major reason for the lack of robustness.
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