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Abstract Imbalance classification techniques have been frequently applied in many machine learning application domains

where the number of the majority (or positive) class of a dataset is much larger than that of the minority (or negative) class.

Meanwhile, feature selection (FS) is one of the key techniques for the high-dimensional classification task in a manner which

greatly improves the classification performance and the computational efficiency. However, most studies of feature selection

and imbalance classification are restricted to off-line batch learning, which is not well adapted to some practical scenarios.

In this paper, we aim to solve high-dimensional imbalanced classification problem accurately and efficiently with only a

small number of active features in an online fashion, and we propose two novel online learning algorithms for this purpose.

In our approach, a classifier which involves only a small and fixed number of features is constructed to classify a sequence

of imbalanced data received in an online manner. We formulate the construction of such online learner into an optimization

problem and use an iterative approach to solve the problem based on the passive-aggressive (PA) algorithm as well as a

truncated gradient (TG) method. We evaluate the performance of the proposed algorithms based on several real-world

datasets, and our experimental results have demonstrated the effectiveness of the proposed algorithms in comparison with

the baselines.
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1 Introduction

Imbalance classification is an important research

topic which has been extensively studied for the last

decade in data mining and machine learning area. The

main objective of imbalance classification is to build ef-

fective and efficient classification models to learn from

the imbalanced dataset in which the majority (or posi-

tive) class has many more examples than the minority

(or negative) class[1]. One example is the disease diag-

nostic problem where the disease cases are usually quite

rare in comparison with normal cases. In this case, a

traditional classification model might have high accu-

racy overall but it provides a much lower identification

rate w.r.t. the minority class (i.e., the disease category)

because most of the classification algorithms aim to op-

timize the performance on the whole training dataset.

Therefore, the traditional classification approaches can-

not be applied to solve the imbalanced classification

problem directly.

In order to improve the scalability, efficiency, and

accuracy of high-dimensional datasets, feature selec-

tion (FS) has been applied to many real-world machine

learning and data mining applications[2-5]. The goal of

feature selection is to select a subset of active features to

build effective and efficient classification models. Due

to the imbalanced data, the features related to the nega-

tive class are usually not comparable with those related

to the positive class. Furthermore, feature selection and

imbalance classification methods only focus on off-line

batch learning, that is, the feature selection and the

classification task run in an off-line fashion. This as-
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sumption, however, may not hold in many real-world

scenarios where the training data actually are formed

in sequence.

Recently, online feature selection (OFS) is consi-

dered in the literature[6-7], and the task is to build an

online learner which only uses a small and fixed number

of features for accurately classifying examples arriving

in a sequential manner. OFS is particularly important

and necessary when a real-world application has to deal

with sequential and high-dimensional training data or it

is expensive to collect the full information of the train-

ing data.

Motivated by recent progresses in online feature

selection and imbalance classification[8-10], in this pa-

per, we propose two novel online learning algorithms to

conduct feature selection and imbalance classification

at the same time. Our goal is to alleviate the effect

of the curse of dimensionality, to speed up the learn-

ing process, and to improve the model interpretability

by constructing an accurate and efficient online imba-

lanced classifier. To achieve this, we extend the passive-

aggressive (PA) algorithm to build the online learner

in following perspectives: 1) we set different margins

of loss function for the majority class and the minority

class; 2) we employ an oversampling method to increase

the number of examples of the minority class; 3) we use

a truncated gradient (TG)[11] method to select a small

and fixed number of features to simplify the weight vec-

tor. We then design an optimization scheme to infer the

learner for deciding the separating hyperplane by using

an iterative approach. The major contributions of this

paper are as follows.

• We propose two new algorithms to address the

online imbalanced classification problem by extending

the PA algorithm.

• We consider the case by using a feature selection

method to improve the classification performance based

on high-dimensional imbalanced datasets in an online

learning setting.

• We validate the effectiveness and the efficiency of

the proposed algorithms by conducting highly valuable

experiments based on real-world datasets.

The rest of the paper is organized as follows. In Sec-

tion 2, we give a brief review of related work in class

imbalance, feature selection, and online learning. In

Section 3, we describe our proposed algorithms. Ex-

tensive experimental results are presented in Section 4.

Finally, we provide concluding remarks and a discussion

of future directions in Section 5.

2 Related Work

Our work is closely related to imbalanced classifica-

tion, feature selection, and online learning. Therefore,

in this section, we briefly review the important works

w.r.t. these three areas.

In the past decade, a number of imbalanced classi-

fication approaches have been developed. These meth-

ods can be mainly divided into three categories: sam-

pling techniques, new algorithms, and feature selec-

tion methods[1]. Sampling techniques, such as random

oversampling and random undersampling methods, are

exploited to solve the class imbalance problem in a

dataset. Random oversampling duplicates randomly

selected examples of the minority class to balance

the class distribution. For example, Chawla et al.[12]

proposed synthetic minority over-sampling technique

(SMOTE) to synthesize minority examples by artifi-

cially interpolating the preexisting minority instances.

On the other hand, the random undersampling method

discards examples from the majority class, which may

lead to a loss of important information[13].

Some researchers have exploited new approaches to

enhance the learning performance of imbalanced clas-

sification, such as the one-class learning and the cost-

sensitive learning. These methods deal with the class

imbalance problem in different ways to optimize the

performance of learning algorithm based on unseen

data[5]. For example, when positive examples greatly

outnumber the negative ones, most classifiers tend to

overfit[10]. And one-class learning methods aim to com-

bat the overfitting problem by approaching it from an

unsupervised learning perspective, in which a one-class

learner is built to recognize the samples about whether

they belong to a specific target class. These methods

attempt to measure the similarity between a query ex-

ample and the target class, where classification is ac-

complished by imposing a threshold on the similarity

value, such as one-class SVM trainer[14]. The main

idea of cost-sensitive learning is to minimize the overall

cost of training dataset with respect to a specific loss

function, and the cost can be considered as a penalty

representation when an example is classified into the

wrong class. And these methods usually suppose that

the misclassification for the minority class will be as-

signed higher cost compared with that for the majority

class[15]. In recent years, some researchers have ext-

ended the idea of cost-sensitive learning to address the

issue of online class imbalance[16-17].

Feature selection has been applied to various ap-

plications of high dimensionality in order to improve
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the scalability, efficiency, and accuracy[5]. A number

of feature selection metrics have been explored, such

as information gain, chi-square, correlation coefficient,

and odds ratio[4,18-19]. Imbalanced datasets are com-

monly encountered in high-dimensional and large-scale

classification problems. Consequently, some researchers

have considered feature selection to relieve the effect of

skewed data[5,12]. For example, Maldonado et al.[13]

proposed a backward elimination approach based on

successive holdout steps, whose contribution measure is

based on a balanced loss function obtained on an inde-

pendent subset. Wu et al.[20] proposed the ForesTexter

(RF) algorithm to solve the imbalanced text catego-

rization problem based on an ensemble method, where

each decision tree was built by using a simple random

sampling. And Wu et al.[21] used a stratified sampling

method to select feature subspace when generating de-

cision trees of a random forest for genome-wide associ-

ation (GWA) data.

Various researchers have also considered different

online learning approaches. For example, Perceptron

algorithm is a well-known online learning model, where

the parameters are iteratively updated when the mis-

classification happens in the training phase until it finds

a support vector that can correctly classify all the train-

ing data[22-23]. The PA algorithm[24] follows the crite-

rion of maximum margin learning principle to update

a classifier that is near to the previous function while

suffering less loss based on the current instance.

Recently, online feature selection (OFS) has re-

ceived considerable attention[6-7] where an online

learner is only allowed to maintain a classifier with only

a small and fixed number of features. OFS aims to use

feature selection techniques in an online fashion, which

is more appropriate for real-world applications. The

key challenge of OFS is to build an accurate model in

the online learning process by using a small and fixed

number of features which must be relevant and effi-

ciently identified. In [6-7], an effective algorithm is de-

veloped to resolve this problem by studying sparsity

regularization and truncation techniques.

3 Methodology

In this paper, we propose two online feature selec-

tion methods for the imbalanced classification problem,

namely the PA algorithm which is used to learn an on-

line classifier, and the truncated gradient method which

is used to select a subset of features to infer the classi-

fier.

Unlike batch learning, online learning sequentially

builds a prediction model based on the feedback from a

sequence of data by processing each data instance upon

its arrival. Specially, on each round the online classfier

observes one instance, makes a prediction, and receives

the ground-truth label. Then the classifier is subse-

quently updated based on the predicted result. We fo-

cus on binary classification where the instance’s label

is either +1 or −1. Formally, we denote the instance

by x, which is a vector in R
n. We assume that x is

associated with a unique label y ∈ {+1,−1} and refer

to each instance label pair as (x, y).

In this section, we introduce our proposed algo-

rithms to select features for online imbalanced data.

Firstly, we describe the idea and concreteness of the PA

algorithm. Secondly, we present two strategies to ex-

tend the PA algorithm to exploit imbalanced datasets.

Finally, a truncated gradient method is employed to se-

lect a fixed number of active features while inferring the

online learning models.

3.1 Passive-Aggressive Algorithm

The PA algorithm[24] uses a classification function

based on a vector of weights w ∈ R
n. The prediction

model of PA is given as sign(w · x) and the model is

updated from round to round for the arrived instances.

The magnitude |w · x| is the degree of confidence in

the prediction. The algorithm sequentially learns the

weight vector w where wt denotes the weight vector on

round t. The term yt(wt,xt) where xt and yt denote

the instance and its label on round t respectively, is the

signed margin attained on round t. The margin is a

positive number when sign(wt · xt) = yt, i.e., the al-

gorithm makes a correct prediction. To maintain high

confidence on prediction, the PA algorithm achieves a

margin of at least 1 as often as possible. However, the

choice of 1 as the margin threshold is rather arbitrary.

On rounds where the algorithm attains a margin less

than 1, it suffers an instantaneous loss. Such loss is

defined by the following hinge loss function,

ℓ(w; (x, y)) =

{

0, if y(w · x) > 1,

1− y(w · x), otherwise.
(1)

Whenever the margin exceeds 1, the loss equals zero.

Otherwise, it is equal to the difference between the mar-

gin and 1.

Concretely, the weight vector w1 is initialized to

(0,· · · ,0). There are three variants of update rules used

to modify the weight vector at the end of each round.

The simplest one is, on round t, to set the new weight
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vector wt+1 to be the solution to the following con-

strained optimization problem.

wt+1 = arg min
w∈Rn

1

2
‖w −wt‖2

s.t. ℓ(w; (xt, yt)) = 0.
(2)

Geometrically, wt+1 is set to be the projection ofwt

onto the half-space of vectors which attain a hinge-loss

of zero on the current example. Whenever the hinge-

loss is zero, that is ℓt = 0, wt+1 = wt. In contrast, on

those rounds where the loss is positive, the algorithm

forces wt+1 to satisfy the constraint ℓ(wt+1; (xt, yt)) =

0 regardless of the step-size required. The update, on

one hand, requires wt+1 to correctly classify the cur-

rent example with a sufficiently high margin, and thus,

progress is made. On the other hand, wt+1 must stay

as close as possible to wt, as a result of retaining the

information learned at previous rounds.

The solution to the optimization problem in (2) has

a simple closed form. The detailed induction is given

in [24],

wt+1 = wt + τtytxt, where τt =
ℓt

‖xt‖2
. (3)

Considering the update where the objective function

scales linearly with ξ, namely,

wt+1 = arg min
w∈Rn

1

2
‖w −wt‖2 + Cξ

s.t. ℓ (w; (xt, yt)) 6 ξ & ξ > 0.
(4)

Here C in (4) is a positive parameter which con-

trols the influence of the slack term on the objective

function. Alternatively, the objective function scales

quadratically with ξ, resulting in the following con-

strained optimization problem,

wt+1 = arg min
w∈Rn

1

2
‖w −wt‖2 + Cξ2

s.t. ℓ (w; (xt, yt)) 6 ξ.
(5)

Note that the constraint ξ > 0 in (5) is no longer

necessary since ξ2 is always non-negative. The above

two updates are called PA-I and PA-II. The updates

of PA-I and PA-II also share the simple closed form

wt+1 = wt + τtytxt, where

τt = min{C, ℓt

‖xt‖2
}, (6)

or

τt =
ℓt

‖xt‖2 + 1
2C

.

3.2 Two Extensions of PA Algorithm

In terms of the class imbalance problem, the num-

ber of positive examples is much more than that of

negative examples. The positive examples contribute

much more than the negative examples when updat-

ing the online classification models. The PA algorithm

trains weighted vector w mainly based on the instan-

taneous loss when examples are misclassified, and it

would incline to attaining a sufficiently large margin

for positive examples in imbalanced data. Moreover,

compared with the real classification hyperplane, the

separating hyperplane trained by the PA algorithm is

far away from the positive examples and closed to the

negative ones, and thus, many negative examples might

be misclassified as positive. Since the classifier based

on the PA algorithm would select features with a heavy

weighted value of positive examples regardless of neg-

ative ones, the informative feature with respect to the

negative class might not be included.

3.2.1 Margin-Based PA Algorithm

To deal with the issue of online learning of im-

balance dataset, we propose a new algorithm, called

Margin-Based PA (MBPA), which sets different mar-

gins for positive and negative examples when training

the online learner using the PA algorithm. When ex-

amples of the minority class are assigned to the wrong

class, the penalty is higher compared with the case of

misclassifying the majority examples.

In MBPA, when the classifier encounters a positive

example and makes a wrong prediction, the algorithm

achieves a negative margin, and the loss equals the ab-

solute value of margin. For negative examples, to pre-

dict negative examples with a high confidence, the clas-

sifier achieves a margin of at least 1. That is, when a

negative example is misclassified, it suffers a high loss,

which equals the difference between the ratio of num-

bers of the two classes and the margin value. Formally,

instead of using (1) as the loss function, MBPA uses a

new loss function as follows:

ℓMB (w; (x, y))

=















−y(w · x), if y = +1 & y(w · x) 6 0,

ρ− y(w · x), if y = −1 & y(w · x) 6 1,

0, otherwise,

(7)

where ρ = p
n
, p and n are the number of positive ex-

amples and negative examples that have been learned,

respectively. The value of ρ dynamically changes with

the number of examples incrementally learned.
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According to the resolution of PA-I algorithm ((6)),

the MBPA algorithm updates the weighted vectorwt+1

using the following rules:

wt+1 = wt + τtytxt, where τt = min{C, ℓMB

‖xt‖2
}. (8)

3.2.2 Oversampling-Negative PA Algorithm

The PA algorithm aims to train a hyperplane by ite-

ratively updating a weighted vector w in every round.

The loss of misclassification takes great effects on the

value of w. Since the positive examples are much more

than the negative ones, the loss inclines to increase the

weight of features distinguishing the majority exam-

ples and the informative features of minority class will

be missed. We propose a sampling approach, called

Oversampling-Negative PA (ONPA) algorithm, which

increases the minority examples by artificially synthe-

sizing negative examples in learning process to alleviate

the imbalance of the majority and the minority classes.

We assume that the hypothesis for classification is

linear, and thus, all examples between the two ran-

domly selected examples on one side of the hyperplane

are on the same side, which means that all the ex-

amples belong to one same class. The PA algorithm

is linear and we can artificially synthesize new nega-

tive examples based on the above assumption. Con-

cretely, when a negative example (xt, yt) reaches in one

round, we randomly select N negative examples from

the dataset D = {(xi, yi)|0 < i < t & yi = −1}, each

denoted by (xp, yp). Every intermediate point (exam-

ple) on connection lines decided by xp and xt is viewed

as the new negative example, denoted by (xq, yq), and

xq = xt + α(xt − xp) (0 < α < 1), yq = yt. After

that, we use the newly synthesized negative examples

to update the classifier.

In practice, we cannot know the precise number of

training examples in advance. Therefore, N is a varia-

ble which changes with the number of examples that

have arrived, N = β p

n
(β > 0), where p and n are the

numbers of positive and negative examples that have

arrived, respectively. β is a scale parameter defined

beforehand.

3.3 Truncated Gradient Method

Feature selection can help to improve computational

time and reduce occupied memory for high dimensional

data classification problems. In this paper, we use the

truncated gradient (TG) method to select a fixed num-

ber (M) of available features in building online learners.

Our goal is to induce sparsity in learning the weight

vector while building online classifiers. It is motivated

from the stochastic gradient descent and the idea is to

combine the coefficient rounding and the sub-gradient

algorithm for L1-regularization. Stochastic gradient de-

scent is a method to calculate the minimum value of

a function whose first order derivation is continuous.

And the subgradient algorithm for L1-regularization is

an online method to calculate the weighted vector. The

detailed induction of TG is presented in [11].

TG shrinks the small coefficients (no larger than a

threshold θ > 0) to zero by decreasing a smaller amount

each time. The amount of shrinkage is measured by a

gravity parameter g > 0:

TG (w) = T (w − η∇1L (w; (x, y)) , ηg, θ), (9)

where ∇1L (a; (b, c)) is a sub-gradient of L (a; (b, c))

with respect to the first variable a. The parameter

η > 0 is often referred to as the learning rate.

For a vector v = (v1, · · · , vd) ∈ R
d, and a scalar g >

0, T (v, α, θ) = (T (v1, α, θ) , · · · , T (vd, α, θ)), where T

is defined as follows,

T (vj , α, θ) =















max(0, vj − α), if vj ∈ (0, θ),

min(0, vj + α), if vj ∈ (−θ, 0),

vj , otherwise.

(10)

The truncation is conducted in all K rounds in on-

line learning process. In general, we should not take

K = 1, especially when η is small since each round

modifies w by only a small amount. If t/k is not an in-

teger, we set gt = 0; if t/k is an integer, we set gt = Kg

for a gravity parameter g > 0. In general, the larger the

parameters g and θ are, the more the incurred sparsity

is.

The pseudo-codes of the proposed algorithms,

MBPA, and ONPA, are shown in Algorithm 1 and Al-

gorithm 2, respectively.

4 Experiments

In this section, we conduct extensive experiments

with six public machine learning datasets, including

covtype, mnist, ups, w7a, w8a and farm, to investi-

gate the effectiveness of the proposed algorithms. And

the results show that our proposed algorithms are able

to achieve remarkable improvement against the com-

pared baselines. These datasets are downloaded from

http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datas-

ets/.
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Algorithm 1:1. MBPA Algorithm

Input: {xt, yt|t = 1, · · · , T}, C, M , η, g, θ, K
Output: M selected features

1 Initialization: w1 = (0, · · · , 0), p = 1, n = 1, ρ = 1;
2 foreach t = 1, 2, · · · , T do

3 Attain an example (xt, yt);
4 Predict its label ŷt = sign(wt · xt);
5 if yt = +1 then

6 p = p+ 1;

7 else

8 n = n+ 1

9 Update the value of ρ = p

n
;

10 Update weighted vector w by using (8) and (7);
11 if t%K = 0 then

12 Truncate weighted vector w by using (9) and
(10);

13 return the first M largest features;

Algorithm 2:1. ONPA Algorithm

Input: {xt, yt|t = 1, · · · , T}, C, M , α, β, η, g, θ, K
Output: M selected features

1 Initialization: w1 = (0, · · · , 0), p = 1, n = 1, N = 0;
2 foreach t = 1, 2, · · · , T do

3 Attain an example (xt, yt);
4 Predict its label ŷt = sign(wt · xt);
5 if yt = +1 then

6 p = p+ 1;

7 else

8 n = n+ 1

9 Update the value of N = p

n
;

10 Update weighted vector w by using (3) and (1);
11 if yt = −1 then

12 for k = 1, 2, · · · , N do

13 Randomly select a negative example (xp, yp)
in D;

14 Randomly select a value between 0 and 1 for
α;

15 xq = xt + α(xt − xp) (0 < α < 1), yq = yt;
16 Use (xq , yq) to update weighted vector w by

using (3) and (1);

17 if t%K = 0 then

18 Truncate weighted vector w by using (9) and
(10);

19 return the first M largest features;

In these experiments, the majority class is consi-

dered as the positive class, and the others are consi-

dered as the negative class. The negative examples of

covtype dataset are sampled from the aboriginal nega-

tive dataset. For the mnist dataset, the class numbered

0 and the classes numbered 1∼9 are redefined as the

negative class and the positive class, respectively. The

preparation of ups dataset goes the same as that of the

mnist dataset. And we randomly sample 100 negative

examples from the farm dataset as its negative exam-

ples. Table 1 shows the description of the six datasets.

Table 1. Datasets

Dataset Positive Negative Feature

covtype 283 581 060 000 054

mnist 24 720 7 841 123

ups 6 097 1 194 256

w7a 21 985 661 300

w8a 44 226 1 230 300

farm 1 933 100 20 000

Note: Positive, negative, and feature represent the number of
the positive examples, the negative examples and the features of
each dataset, respectively.

4.1 Evaluation Criteria

For class imbalance learning, it is unfair to evalu-

ate the performance of algorithms by using the average

accuracy (the percentage of testing examples correctly

recognized by the classifier) since the number of posi-

tive examples is much larger than the number of neg-

ative examples. For instance, there are 990 positive

examples and 10 negative examples. Even if all exam-

ples are classified as positive, the classifier will achieve

99% accuracy, and this assessment is not acceptable

for class imbalance learning. Therefore, we choose the

specificity and the geometric mean (abbreviated as g-

mean) as performance evaluation criteria for our pro-

posed and compared algorithms. We define the speci-

ficity as the percentage of negative examples which are

correctly classified as the negative class by a classifier,

and it is calculated by using the confusion matrix (in

Table 2) whose fields characterize the classification be-

havior of a given classifier. For instance, c is the number

of misclassified negative examples and d is the number

of correctly classified negative examples. The equation

of calculating the specificity is given as following:

specificity =
d

c+ d
.

Informally, besides that the negative examples are

correctly recognized, the classifier is expected to per-

form well on both negative and positive examples,

rather than only on the minority class at the cost of

the majority class. The g-mean is firstly used by Kubat

and Matwin in 1997[25], which indicates the geometric

mean of the accuracies separately on each of two oppo-

site classes. This measure maximizes the accuracy on

each class while keeping these two accuracies balanced.

Following is the specific calculation of g-mean.

g-mean =
√
a+ × a−,

where a+ is the accuracy on positive examples, a+ =
a

a+b
, and a− is the accuracy on negative examples,

a− = d
c+d

.
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Table 2. Confusion Matrix

Predicted

Positive Negative

True Positive a b

Negative c d

4.2 Experimental Results

We compare our proposed two algorithms with

the cost-sensitive (CS) algorithm and the PA algo-

rithm (which is optimized by using truncated gradient

method). Because the sequence that examples arrive

slightly influences the experimental results, we show the

average value of 20 times testing in random sequence,

and four algorithms observe the same sequence every

time. We assign the same value of parameters (i.e., η,

g, θ, and K) to these four algorithms, as well as the

same number of selected features.

In Fig.1, we show the g-mean of six datasets con-

ducted on four algorithms, where each g-mean changes

with the number of selected features. And in Fig.2, the

measure, specificity, changes with the same situation.

We can see from the figure that MBPA and ONPA

algorithms always perform better than the other two

compared algorithms on the measurement of g-mean

and specificity. That is, the two proposed algorithms

not only take effect on the classification of both posi-

tive and negative examples (indicated by g-mean) but

also highly recognize the negative examples of the mi-

nor class (indicated by specificity). It demonstrates

that our proposed two extended algorithms by modify-
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Fig.1. G-mean of four algorithms with respect to the percentage of selected features on six datasets. (a) covtype. (b) mnist. (c) ups.
(d) w7a. (e) w8a. (f) farm.
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Fig.2. Specificity of four algorithms with respect to the percentage of selected features on six datasets. (a) covtype. (b) mnist. (c) ups.
(d) w7a. (e) w8a. (f) farm.

ing the PA algorithm show remarkable improvement on

the online feature selection of class imbalance as com-

pared with two baselines. Besides, CS algorithm is bet-

ter than the optimized PA algorithm for most of the

datasets. In general, MBPA algorithm performs better

than ONPA algorithm.

As can be seen from the presented two figures, the

tendency of two measurements changes almost consis-

tently on all six datasets. On the covtype dataset and

the farm dataset, the g-mean and the specificity of four

algorithms remain stable as the number of selected fea-

tures increases. However, on the other four datasets,

the g-mean of MBPA and ONPA algorithms grows

when the percentage of selected features increases, and

then it levels off. The g-mean of CS and PA algorithms

consistently goes up along with the number of selected

features increasing. For the specificity measurement on

the six datasets, our proposed MBPA and ONPA algo-

rithms level out with slight fluctuation, and compared

baselines show a steady upward trend when the number

of selected features changes. Hence, the MBPA and the

ONPA algorithms are not so sensitive to the number of

selected features and they can be effective and efficient

when the dataset is high-dimensional. It can be seen
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from Fig.1 and Fig.2, the g-mean and the specificity

of MBPA and ONPA algorithms on the mnist and the

ups datasets are over 0.95 even if the number of selected

features is small.

5 Conclusions

In this paper, we proposed two algorithms to tackle

the problem of online feature selection on imbalanced

classification problem based on the PA algorithm. We

modified the PA algorithm by using different margin

thresholds. We also artificially synthesized negative

examples to reduce the imbalance between the ma-

jority and the minority classes. Furthermore, we em-

ployed the truncated gradient method to simplify the

weight vector of the separating hyperplane. This leads

to an effective and efficient online learning model that

is built from only a small and fixed number of active

features for imbalanced classification. Experimental re-

sults on real-world datasets showed that the proposed

algorithms provide a better performance against the

compared baselines.

Some studies remain to be investigated in our fu-

ture work. The datasets used in the experiments are

not large-scale, and this suggests one way to extend

our approach. Besides, this paper only focuses on bi-

nary classification, and it is interesting to study the on-

line feature selection of class imbalance with multiple

classes.
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