
Neural Networks 126 (2020) 250–261

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Multi-way backpropagation for training compact deep neural
networks
Yong Guo a,1, Jian Chen a,1, Qing Du a,1, Anton Van Den Hengel b, Qinfeng Shi b,
Mingkui Tan a,c,∗

a South China University of Technology, China
b University of Adelaide, Australia
c Guangzhou Laboratory, China

a r t i c l e i n f o

Article history:
Received 26 December 2019
Received in revised form 26 February 2020
Accepted 2 March 2020
Available online 26 March 2020

Keywords:
Backpropagation
Supervision vanishing
Compact model

a b s t r a c t

Depth is one of the key factors behind the success of convolutional neural networks (CNNs). Since
ResNet (He et al., 2016), we are able to train very deep CNNs as the gradient vanishing issue has
been largely addressed by the introduction of skip connections. However, we observe that, when the
depth is very large, the intermediate layers (especially shallow layers) may fail to receive sufficient
supervision from the loss due to severe transformation through long backpropagation path. As a
result, the representation power of intermediate layers can be very weak and the model becomes very
redundant with limited performance. In this paper, we first investigate the supervision vanishing issue
in existing backpropagation (BP) methods. And then, we propose to address it via an effective method,
called Multi-way BP (MW-BP), which relies on multiple auxiliary losses added to the intermediate
layers of the network. The proposed MW-BP method can be applied to most deep architectures with
slight modifications, such as ResNet and MobileNet. Our method often gives rise to much more compact
models (denoted by ‘‘Mw+Architecture") than existing methods. For example, MwResNet-44 with 44
layers performs better than ResNet-110 with 110 layers on CIFAR-10 and CIFAR-100. More critically,
the resultant models even outperform the light models obtained by state-of-the-art model compression
methods. Last, our method inherently produces multiple compact models with different depths at the
same time, which is helpful for model selection. Extensive experiments on both image classification
and face recognition demonstrate the superiority of the proposed method.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Since 2012 when AlexNet won the first place in the ImageNet
competition (Krizhevsky, Sutskever, & Hinton, 2012), convolu-
tional neural networks (CNNs) (LeCun et al., 1989) have been
producing state-of-the-art results in many of the most challeng-
ing vision tasks including image classification (Guo, Wu, Deng,
Chen, & Tan, 2018; He, Zhang, Ren, & Sun, 2016a; Lee, Xie,
Gallagher, Zhang, & Tu, 2015), face recognition (Chen, Liu, Gao,
& Han, 2018), semantic segmentation (Ibtehaz & Rahman, 2020),
and many other applications (Cao et al., 2018; Guo et al., 2019;
Liu et al., 0000; Wang, Dai, Cai, Sun and Chen, 2018). More-
over, deep CNNs have also become the workhorse of many other

∗ Corresponding author.
E-mail addresses: guo.yong@mail.scut.edu.cn (Y. Guo),

ellachen@scut.edu.cn (J. Chen), duqing@scut.edu.cn (Q. Du),
anton.vandenhengel@adelaide.edu.au (A. Van Den Hengel),
javen.shi@adelaide.edu.au (Q. Shi), mingkuitan@scut.edu.cn (M. Tan).
1 Yong Guo, Jian Chen, Qing Du contributed equally.

tasks and real-world applications beyond computer vision, such
as natural language understanding (Gonzalez-Dominguez, Lopez-
Moreno, Moreno, & Gonzalez-Rodriguez, 2015) and speech recog-
nition (LeCun, Bengio, & Hinton, 2015).

Recent studies (Srivastava, Greff, & Schmidhuber, 2015;
Szegedy et al., 2015) have demonstrated the importance of depth
to the representation power of neural networks. Recently, the
training of very deep models becomes possible (e.g., ResNet He
et al., 2016a), since the gradient vanishing issue has been largely
addressed by introducing skip (i.e., shortcut) connections. How-
ever, when the depth becomes large, the model may incur train-
ing difficulties due to what we call supervision vanishing problem.
Specifically, even with the skip connection or other advanced
structures, the supervision from the loss tends to fade through
a long backpropagation path (Pascanu, Mikolov, & Bengio, 0000;
Shen, Lin, & Huang, 2016). As a result, the intermediate layers
fail to receive sufficient information from the loss, which may
lead to severe internal model redundancy. The existence of such
internal redundancy often means more parameters, larger model
size, higher inference cost, more energy consumption, and/or de-
graded performance (Ba & Caruana, 2014). Note that in real-world

https://doi.org/10.1016/j.neunet.2020.03.001
0893-6080/© 2020 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.neunet.2020.03.001
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2020.03.001&domain=pdf
mailto:guo.yong@mail.scut.edu.cn
mailto:ellachen@scut.edu.cn
mailto:duqing@scut.edu.cn
mailto:anton.vandenhengel@adelaide.edu.au
mailto:javen.shi@adelaide.edu.au
mailto:mingkuitan@scut.edu.cn
https://doi.org/10.1016/j.neunet.2020.03.001

Y. Guo, J. Chen, Q. Du et al. / Neural Networks 126 (2020) 250–261 251

applications, we have an urgent demand for efficient models
with smaller model size, less energy consumption, and promising
performance. In this sense, how to reduce the internal model
redundancy in CNNs while keeping/improving the performance
is an important and urgent problem.

In this paper, we extensively study the supervision vanish-
ing issue in existing BP methods and investigate why these
methods would incur internal model redundancy even in care-
fully designed compact architectures. One can alleviate this issue
by introducing auxiliary losses to the network (Szegedy et al.,
2015). However, how to well exploit auxiliary losses to obtain
more compact models still remains a question. Recent studies,
such as Deeply Supervised Network (DSN) (Lee et al., 2015) and
GoogLeNet (Szegedy et al., 2015), consider multiple losses as a
joint loss and sum up the gradients from relevant losses into a
joint one in backpropagation (BP). These methods have two major
limitations. First, the multiple losses may have conflicts with
each other due to their different positions in the network and
simply summing them up may incur severe training difficulties.
To alleviate this, one should carefully adjust the weights of losses
during the training (Lee et al., 2015), which, however, limits its
applicability to general cases. Second, these methods may still
suffer from supervision vanishing and hence obtain only marginal
improvement in the performance.

To address the supervision vanishing issue and thus reduce the
internal redundancy of deep models, we propose a novel training
method, called Multi-way BP (MW-BP), in which we let multi-
ple losses share one forward propagation but conduct multiple
separate backpropagations (one for each loss separately). In this
way, it helps to alleviate the vanishing of supervision and obtain
more compact models. Note that in this paper we do not attempt
to design compact models (Howard et al., 0000; Zhang, Zhou,
Lin, & Sun, 2018) or search for some compact architectures (Guo
et al., 2019; Tan et al., 2019). Instead, we focus on improving
the training of CNNs to obtain compact models. In practice, the
proposed training paradigm can be applied to a variety of deep
architectures, including both large models like ResNet (He et al.,
2016a) and lightweight models like MobileNet (Sandler, Howard,
Zhu, Zhmoginov, & Chen, 2018).

In the paper, we make the following contributions.

• We investigate the supervision vanishing issue when train-
ing deep models using existing BP methods. To address
the issue, we exploit multiple auxiliary losses to provide
additional supervision and propose an adaptive weighting
scheme to alleviate the conflicts among multiple losses.
• We propose a simple but effective Multi-way BP (MW-BP)

method to train deep models with multiple losses. During
the training, we apply one shared forward propagation for
all the losses but sequentially perform a backpropagation for
each loss. In this way, the intermediate layers can receive
sufficient information from each loss and hence their repre-
sentation power can be significantly improved. Our MW-BP
can be applied to various architectures, such as ResNet (He
et al., 2016a), DenseNet (Huang, Liu, Van Der Maaten, &
Weinberger, 2017), Inception network (Szegedy, Ioffe, Van-
houcke, & Alemi, 2017) and MobileNet (Sandler et al., 2018).
We demonstrate the superiority of the proposed method
with various architectures on both image classification and
face recognition tasks.
• The proposed method can effectively reduce the internal

model redundancy and often gives rise to more compact
models than the models trained by existing BP methods. For
example, MwResNet-44 of 44 layers outperforms ResNet-
110 of 110 layers on several benchmark data sets. More
critically, the models obtained by MW-BP even outperform

the carefully compressed models obtained by state-of-the-
art compression methods, in terms of both accuracy and
model compactness (See Section 5.3).
• Equipped with MW-BP, we inherently produce multiple

models of different depths at the same time. Surprisingly,
these intermediate models often outperform their full-depth
counterparts or even deeper ones trained by existing BP
methods. In fact, we can choose an appropriate one as the
final model. In this sense, the proposed method is helpful
for model selection.

2. Related work

2.1. Deep models with multiple losses

Employing auxiliary classifiers to aid in the training has been
investigated in many state-of-the-art methods. In GoogLeNet
(Szegedy et al., 2015), two auxiliary classifiers are connected to
the intermediate layers with very small weights for them to en-
sure the convergence (i.e., 0.3 for the auxiliary losses). In DSN (Lee
et al., 2015), each convolution layer is associated with a classifier.
To avoid the training difficulty, DSN keeps the losses for a number
of epochs and discard all but the final loss to finish the remaining
epochs. Unlike these methods, the proposed MW-BP does not
need to set such a small weight to auxiliary losses or discard any
loss during the training, which helps to simultaneously produce
multiple models with promising performance, with the ensuing
benefits for model selection.

2.2. Backpropagation methods

Besides the standard BP method for handling a single loss,
several BP variants have been proposed for dealing with mul-
tiple losses, including Joint BP (Lee et al., 2015; Szegedy et al.,
2015) and Relay BP (Shen et al., 2016). Joint BP, that is used
in GoogLeNet (Szegedy et al., 2015) and DSN (Lee et al., 2015),
considers a weighted sum of multiple losses as a joint one and
updates the model parameters with the joint gradients. Another
variant, called Relay BP (Shen et al., 2016), discards the gradients
from those losses with the long backpropagation paths to better
preserve the supervision signal. In Joint BP and Relay BP, the
multiple losses work jointly for the training and the gradients
w.r.t. different losses are summed up in a single backpropagation.
However, even with auxiliary losses, the supervision vanishing
issue can still occur in these methods. Unlike Joint BP and Relay
BP, in Drucker and Le Cun (1992), a double backpropagation
method was proposed. Different from these methods, our MW-
BP conducts a backpropagation for each loss separately. In this
way, the intermediate layers can receive sufficient supervision
from the nearest losses and the supervision vanishing issue can
be alleviated.

2.3. Compact model design

Many attempts have been made to design compact models,
such as ResNeXt (Xie, Girshick, Dollár, Tu, & He, 2017), Mo-
bileNet (Howard et al., 0000), ShuffleNet (Zhang et al., 2018), etc.
Relying on ResNet (He et al., 2016a), ResNeXt (Xie et al., 2017)
introduces group convolutions into the architecture to improve
the model compactness. With the focus on mobile devices, Mo-
bileNet (Howard et al., 0000) employs depthwise separable con-
volution to build lightweight networks. ShuffleNet (Zhang et al.,
2018) uses a channel shuffle operation to reduce the model size
and inference complexity. Instead of designing compact architec-
tures, we focus on devising an effective training method to obtain
more compact models. Empirically, our MW-BP exhibits good
compatibility with various architectures and can produce more
compact models than the ones trained by existing BP methods.

252 Y. Guo, J. Chen, Q. Du et al. / Neural Networks 126 (2020) 250–261

2.4. Model compression methods

Recently, many efforts have been made to obtain compact
models via model compression techniques. For example, one can
prune unimportant channels based on a pretrained CNN and
introduce sparsity into the filters of convolution (He, Liu, Wang,
Hu, & Yang, 2019; He, Zhang, & Sun, 2017; Li, Kadav, Durdanovic,
Samet, & Graf, 2017; Luo, Wu, & Lin, 2017; Zhuang et al., 2018). Li
et al. utilize an ℓ1-norm criterion to prune unimportant filters (Li
et al., 2017). In He et al. (2019), He et al. propose to use the ge-
ometric median of the filters to perform channel pruning. Unlike
these methods, we seek to develop an effective training algorithm
to produce compact models. More critically, the resultant models
trained by MW-BP even outperform the carefully compressed
models obtained by state-of-the-art model compression methods
(See results and comparisons in Section 5.3).

3. Supervision vanishing in deep networks

In this section, we study the supervision vanishing issue in
training deep networks.

Without loss of generality, we consider an L-layers network
that conducts forward propagation for any layer l by

yl = λlxl + Fl(xl,Wl), xl+1 = h(yl), (1)

where λl ∈ {0, 1}. Here, xl and xl+1 denote the input and output of
the lth layer, respectively; yl denotes the intermediate feature be-
fore activation; h is a nonlinear activation function (e.g., Rectified
Linear Unit (ReLU) (Nair & Hinton, 2010) or Sigmoid function);
and Fl denotes a transformation function (e.g., convolution op-
eration) parameterized by Wl. When λl = 0, Eq. (1) represents
the forward propagation process of plain deep networks, such as
AlexNet (Krizhevsky et al., 2012) and VGG (Simonyan & Zisser-
man, 2015). When λl = 1, there is a shortcut connection between
the lth and (l + 1)th layer. The shortcut connection, an effective
technique to avoid the gradient vanishing issue in BP, enables
us to train very deep models that are known as the residual
networks (He et al., 2016a).

In fact, one can use stochastic gradient descent (SGD) (Wilson
& Martinez, 2003) to update the parameters {Wl}

L−1
l=0 . Let ξ be the

loss function, the gradient of ξ w.r.t. Wl can be computed by
∂ξ

∂Wl
=

∂ξ

∂xl+1
∂xl+1
∂Wl

, (2)

where ∂ξ

∂xl+1
denotes the gradient propagated from ξ to some

intermediate layer. By applying the chain rule w.r.t. Eq. (1), such
gradient for any layer l can be written as

∂ξ

∂xl
=

∂ξ

∂xL

(
∂xL

∂xL−1
· · ·

∂xl+1
∂xl

)
=

∂ξ

∂xL

L−1∏
j=l

∂xj+1
∂yj

∂yj
∂xj

=
∂ξ

∂xL

L−1∏
j=l

Tj(Wj),

(3)

where

Tj(Wj) =
∂xj+1
∂yj

(
λjI+ ∂xjFj(xj,Wj)

)
. (4)

Definition 1 (Supervision Information). We define ∂ξ

∂xl
, the partial

gradient of ξ w.r.t. xl, as the supervision information obtained
from the loss. From Eq. (3), the partial gradient ∂ξ

∂xl
contains two

parts, namely ∂ξ

∂xL
and

∏L−1
j=l Tj(Wj), where the term ∂ξ

∂xL
is directly

related to the loss ξ .

Note that each Tj(Wj) is a transformation matrix that trans-
forms ∂ξ

∂xL
a bit. Then, the term

∏L−1
j=l Tj(Wj) will transform the

gradient ∂ξ

∂xL
through a series of layers from the final layer to the

lth layer. When (L−l) is large, the transformation
∏L−1

j=l Tj(Wj) can
be too severe and make the component ∂ξ

∂xL
negligible in ∂ξ

∂xl
. As a

result, the shallow layers may not receive sufficient supervision
from the final loss ξ due to the severe transformation of the long-
path backpropagation. We call this phenomenon the supervision
vanishing issue. As a result, the intermediate layers (especially
the shallow layers) may have limited representation power. In
this sense, there would be a lot of redundant parameters in the
intermediate layers, leading to severe internal redundancy in
deep models. In practice, such redundancy would deteriorate the
performance of deep models (See results in Table 6).

4. Multi-way backpropagation for deep models with auxiliary
losses

4.1. Deep model with auxiliary losses

As mentioned in Section 3, the standard BP with a single
loss may incur supervision vanishing issue and lead to severe
internal model redundancy. To address this, it is natural to in-
troduce auxiliary losses to the network to provide additional
supervision for shallow layers, similar to DSN (Lee et al., 2015)
and GoogLeNet (Szegedy et al., 2015). However, how to avoid
the possible conflicts among different losses and well exploit the
information from auxiliary losses to train compact models are still
open questions.

Taking an L-layer ResNet for example, as shown in Fig. 1, we
introduce K auxiliary losses to the network, with each being built
on the top of an average pooling layer. Including the final loss
ξ , we have K̂ = K + 1 losses in total. We can either apply the
same form of the final loss ξK to each auxiliary loss {ξi}K−1i=0 or
exploit other forms of losses for them. We use Li to indicate the
layer to which the ith loss is connected. Note that each loss ξi is
associated with a model of depth Li. Thus, with multiple losses,
we can inherently obtain multiple models of different depths (See
Fig. 1).

4.1.1. Adaptive weighting scheme for auxiliary losses
The multiple losses may incur conflicts and thus hamper the

training of deep networks. Specifically, given multiple losses with
different forms, we have different objectives and the losses would
naturally incur conflicts. Moreover, note that shallow layers often
have less representation power than deep layers. If we add the
losses to different layers, even with the same loss form, the
shallow losses may produce inaccurate gradients and hence incur
conflicts with the deep losses. To alleviate the loss conflict issue,
we develop an adaptive weighting scheme for different losses.

Since the auxiliary losses are not equally important, we should
impose different confidence, denoted by {γi}

K−1
i=0 , over them. By

default, we set γK = 1 for the final loss. For the auxiliary losses
{ξi}

K−1
i=0 , in general, the losses at deeper layers should be more

important, since the features at deeper layers often have better
representation power. Thus, we use γi = (Li

LK−1
)ν to reflect such

difference, where ν > 0 is the decaying rate of γi. In practice,
we observe that if γi < 0.01, the effect of ξi becomes negligible.
We thus use the following rule to adjust the weights for different
losses:

γi = max
(
0.01,

(
Li

LK−1

)ν)
,∀i ∈ {0, . . . , K − 1}. (5)

In practice, we suggest setting ν ∈ [1/2, 2]. In practice, similar
to the adjustment of the learning rate, we may apply an adaptive

Y. Guo, J. Chen, Q. Du et al. / Neural Networks 126 (2020) 250–261 253

Fig. 1. Architecture with auxiliary losses. Taking ResNet for example, we put K additional losses {ξi}K−1i=0 evenly to the network, with each loss being built on top of
an average pooling layer. Here, the K losses are weighted by {γi}

K−1
i=0 , fc indicates the fully connected layer, ξ (also called ξK) denotes the final loss and N denotes

the width of networks.

strategy to adjust ν during the training process (See discussions
in Section 6.2).

4.1.2. Number of auxiliary outputs
There remains a question regarding how many auxiliary losses

should be introduced. We observe that adding too many outputs
would hamper the performance due to the conflicts of losses and
also significantly increase the training complexity (See discus-
sions of K in Section 6.3). Without loss of generality, given K
auxiliary losses (i.e., K̂=K+1 losses in total), we can introduce
an auxiliary loss every τ = ⌈L/K̂⌉ layers, where τ ≥ 5.

4.2. Existing BP methods for multiple losses

Several BP methods have been proposed to train networks
with auxiliary losses, e.g., Joint BP (Lee et al., 2015; Szegedy et al.,
2015) and Relay BP (Shen et al., 2016).

4.2.1. Joint BP
Joint BP considers minimizing a joint objective function of

multiple losses (Lee et al., 2015; Szegedy et al., 2015):

L =
K∑

i=0

γiξi. (6)

With the focus on the kth loss, the gradient of L w.r.t. xl (where
Lk−1 < l ≤ Lk) can be computed by

∂L
∂xl
=

K∑
i=k

γi
∂ξi

∂xLi

Li−1∏
j=l

Tj(Wj). (7)

From Eq. (7), Joint BP considers the information from all the losses
by summing up the gradients. However, it has several limita-
tions. First, the deep-layer losses (often with large weights) may

dominate the gradients in Eq. (7) and the gradients from shallow-
layer losses (often with very small weights) can be negligible.
Thus, similar to the standard BP, the transformation

∏Li−1
j=l Tj(Wj)

for the deep-layer losses may cause information vanishing at
intermediate layers (Shen et al., 2016), resulting in significant
information loss in Eq. (7).

Second, due to the possible conflicts among losses, the gradi-
ents w.r.t. xl from different losses may have different directions.
As a result, the gradient in Eq. (7) can be inaccurate, which may
incur training difficulties. To alleviate this, one should carefully
adjust the weights γi for the auxiliary losses. For example, in
DSN (Lee et al., 2015), the weights for auxiliary losses gradually
decrease to zero during the training. However, decreasing the
weights of auxiliary losses fails to fully exploit the auxiliary
losses and thus hampers the overall performance (See results in
Section 5.1).

4.2.2. Relay BP
To alleviate the possible information loss issue in Joint BP,

Shen et al. proposed a Relay BP (Shen et al., 2016) method
that discards the gradients propagated from deep-layer losses far
away from a considered layer. With the focus on the kth loss, the
gradient w.r.t. xl (where Lk−1 < l ≤ Lk) becomes

∂L
∂xl
=

k+c∑
i=k

γi
∂ξi

∂xLi

Li−1∏
j=l

Tj(Wj), (8)

which means the lth layer only receives the gradients from
{ξi}

k+c
i=k , where c ≥ 1 is a constant. If c ≥ K−k, Relay BP is reduced

to Joint BP. When c < K − k, those gradients with long paths are
discarded. However, without considering deep-layer losses, the
shallow layers will tend to over-fit the nearby losses, which may
deteriorate the representation power of the whole network (See
results in Section 5.1).

254 Y. Guo, J. Chen, Q. Du et al. / Neural Networks 126 (2020) 250–261

Fig. 2. A simple demonstration of Multi-way backpropagation (left) and Joint backpropagation (right) for training deep networks with auxiliary losses.

Algorithm 1: MW-BP for training deep networks.
Require: Model parameters: {Wl}

L−1
l=0 = {W0, . . . ,WL−1};

Output positions: {Li}Ki=0 = {L0, . . . , LK };
Weights for different losses {γi}

K
i=0 = {γ0, . . . , γK };

Input data: x0; Learning rate: α.
1: // Shared Forward Propagation for multiple outputs
2: for l = 0 to L−1 do
3: Compute xl+1 = h (λlxl + Fl(xl,Wl));
4: if l ∈ {Li}Ki=0 then
5: Compute the loss ξi;
6: end if
7: end for
8: // Multi-way Backward Propagation
9: Let U0

l ← Wl, ∀l ∈ {0, . . . , L−1};
10: for i = 0 to K do
11: Conduct backpropagation w.r.t. ξi to compute { ∂ξi

∂Ui
l
}
Li
l=0;

12: Update model parameters that are relevant to ξi by
Ui+1

l ←Ui
l−αγi

∂ξi
∂Ui

l
, ∀l ∈ {0, . . ., Li};

13: Update model parameters that are irrelevant to ξi by
Ui+1

l ←Ui
l , ∀l ∈ {Li + 1, . . ., L−1};

14: end for
15: Let Wl ← UK+1

l , ∀l ∈ {0, . . . , L−1};

4.3. Multi-way backpropagation

Using auxiliary losses is helpful for providing additional su-
pervision information for intermediate layers. However, due to
the possible conflicts among multiple losses, simply summing up
the gradients propagated from multiple losses into a joint one
(as done by Joint BP and Relay BP) may not achieve promising
performance, as the conflicts are inherently ignored. Moreover,
the supervision vanishing issue may still happen in Joint BP due
to the long propagation path.

To address the above issues and well exploit the information
from all the losses, we propose a simple yet effective method,
called Multi-way BP (MW-BP), to train deep neural networks with
multiple losses. The overall scheme is shown in Algorithm 1,
which consists of one shared forward propagation and multi-
ple backward propagations in each iteration. Note that, when
performing the multiple backpropagations, we update the model
parameters but keep the features and losses unchanged. As will
be explained, this paradigm can effectively alleviate the possi-
ble conflicts among different losses and hence can address the
supervision vanishing issue.

In Algorithm 1, similar to existing BP methods, in each iter-
ation, we conduct a forward propagation to update the features
and compute all the losses in {ξi}Ki=0. However, when updating the
model parameters, unlike Joint BP and Relay BP, we conduct mul-
tiple backpropagations (one for each loss in {ξi}Ki=0) in a sequential
manner. An illustrative comparison between Joint BP and MW-BP
can be found in Fig. 2.

Taking the ith loss ξi for example, we compute the gradient of
the lth layer (∀l ≤ Li) via backpropagation and update the model

parameters via batch stochastic gradient descent (SGD). Let xl be
the input feature of the lth layer and Ui

l be the updated parame-
ters after the (i− 1)th backpropagation, with U0

l being initialized
byWl. For the ith loss ξi, we seek to update the parameters {Ui

l}
Li
l=0

that include both the updated parameters {Ui
l}
Li−1
l=0 by the (i−1)th

loss and the unchanged parameters of the layers between Li−1
and Li. Based on {Ui

l}
Li
l=0, we update the model parameters by

Ui+1
l ← Ui

l − α · γi
∂ξi

∂Ui
l
, (9)

where α denotes the learning rate and ∂ξi
∂Ui

l
=

∂ξi
∂xl+1

∂xl+1
∂Ui

l
. By

applying the chain rule, the gradient ∂ξi
∂xl

for any layer l (l≤Li) can
be computed by

∂ξi

∂xl
=

∂ξi

∂xLi

Li−1∏
j=l

Tj(Ui
j), (10)

with Tj(Ui
j) =

∂xj+1
∂yj

(λjI+ ∂xjFj(xj,Ui
j)).

Remark 1. According to Eq. (9), we use − ∂ξi
∂Ui

l
as the search

direction, which means the (i+ 1)th update is dependent on the
ith update. As will be explained, this is very important for MW-
BP (See Section 4.4.1). In fact, one may use − ∂ξi

∂Wl
as the search

direction for the (i + 1)th update, i.e., each backpropagation is
independent of each other. This strategy, however, is essentially
the Joint BP method in Fig. 2(b).

Remark 2. Unlike existing BP methods in which the forward
and backward propagations are often performed in pairs, in MW-
BP, we apply a shared forward propagation for multiple updates,
namely we do not update the features and losses after each back-
ward propagation. As will be explained in Section 4.4.2, this is
valid and also essential in boosting the performance and reducing
the training complexity.

Differences from Joint BP. MW-BP is essentially different from
Joint BP when computing gradients. As shown in Fig. 2, in Joint BP,
since the gradient transformation of the backpropagation T(W)
relies on the fixed model parameters W, each backpropagation is
independent of each other. Thus, conducting multiple backpropa-
gations is equivalent to conducting a single backpropagation w.r.t.
the joint loss. By contrast, in MW-BP, the gradient transforma-
tion of the ith backpropagation T(Ui) depends on the updated
parameters Ui by the (i − 1)th backpropagation rather than W
(See Fig. 2). Due to the dependence on previous updates, MW-BP
gets different gradients from Joint BP and cannot be implemented
by a single entire backpropagation.

4.4. Characteristics of MW-BP

Relying on the training paradigm in Algorithm 1, MW-BP has
several characteristics over existing methods.

Y. Guo, J. Chen, Q. Du et al. / Neural Networks 126 (2020) 250–261 255

First, MW-BP can effectively address the supervision vanishing
issue that occurred in the standard BP. In the standard BP, the
long backpropagation path in Eq. (3) w.r.t. a single loss tends
to incur the supervision vanishing issue. However, for MW-BP,
we consider multiple backpropagations (one for each loss) to
update model parameters in Eq. (9). Clearly, from Eq. (10), any
intermediate layer l (especially the shallow layers) can receive
sufficient supervision from their nearby losses (with Li ≥ l).

Second, MW-BP can also effectively avoid the loss conflict
issue in Joint BP and Relay BP. As shown in Eqs. (7) and (8), Joint
BP and Relay BP simply sum up the gradients of the related losses
into a joint one. In this way, the conflicts among losses may affect
the model performance (See Section 4.2 for details). Unlike these
two methods, in MW-BP, we conduct the backpropagation for
each loss. Thus, the summation process is avoided. As a result,
the risk of loss conflict can be greatly reduced. However, to well
address the supervision vanishing issue and the loss conflict issue,
the importance of the order of conducting backpropagations
and the shared forward propagation should be highlighted.

4.4.1. The order of conducting backpropagations
In MW-BP, we conduct multiple backpropagations from the

loss ξ0 to ξK in a sequential way. A primary reason is that a
deeper loss, in general, is more important than a shallower loss
(See Section 4.1 for details). Note that shallower models often
have less representation power than deeper models. Thus, the
attempt to fit shallower losses may introduce errors or distortions
to the whole network (Lee et al., 2015). Fortunately, according
to Eq. (9), the (i + 1)th BP is built on the ith model update (See
Remark 1). In this way, the errors brought by the model update
w.r.t. a shallow loss can be corrected by the model update w.r.t.
the deeper losses, which helps to obtain a good whole model
and promising intermediate models. In other words, the order
of backpropagations is essential for addressing the loss conflict
issue.

4.4.2. The shared forward propagation
As stated in Remark 2, the shared forward propagation is

one of the key features in MW-BP, which means that we do
not update either features or losses after each backpropagation,
even though a part of model parameters have been changed. In
fact, upon the updating order in MW-BP, if updating the features
and losses, the previous updates may highly affect the update
w.r.t. deeper losses. For example, the deeper/final losses may
decrease too quickly at the beginning epochs, which may incur
gradient vanishing issue when updating deep layers and thus
deteriorate the overall performance (See results and discussions
in Section 5.1).

Moreover, as previously mentioned, the model update w.r.t.
a shallow loss may bring in errors. However, if updating the
features and losses, the corresponding forward propagation may
propagate the errors to the deeper losses and hamper the cor-
rection effect of the model update w.r.t. them. Last, by avoiding
multiple forward propagations, the shared forward propagation
can significantly reduce the training complexity.

4.5. More discussions

To verify the above arguments and further analyze the pro-
posed MW-BP method, in the following, we introduce several
possible variants by considering the paired forward–backward
propagation and/or different updating orders.

The first variant is referred to as Naïve MW-BP, in which a
forward propagation is performed after each backpropagation.
This method, however, may suffer from gradient vanishing issue
since the deeper/final loss may decrease very quickly by updating

the features and losses after each backpropagation. Therefore, the
performance may be severely degraded (See Fig. 3 and discus-
sions in Section 5.1). Moreover, multiple forward propagations
will incur considerable training cost.

The second variant is referred to as Reverse MW-BP, in which
we employ the same training paradigm of MW-BP but conduct
multiple backpropagations in the reverse order of MW-BP (i.e.,
from the last loss ξK to the first loss ξ0). However, since the shal-
lower models often have less representation power, the model
update w.r.t. the shallower losses after the deeper losses may in-
troduce representation errors into the whole network. Unlike this
method, the errors incurred by shallower losses can be corrected
by deeper losses in MW-BP that conducts backpropagations from
the shallow losses to the deep ones.

The third variant is referred to as Naïve Reverse MW-BP.
Based on Reverse MW-BP, we conduct a forward propagation
after each backpropagation. However, in Naïve Reverse MW-BP,
since the shallower losses will not affect the deeper/final losses,
the gradient vanishing may not be as severe as Naïve MW-BP.
Nevertheless, its performance is still limited since the model
update w.r.t. shallower losses after deeper losses may bring in
representation errors and hamper the overall performance. More-
over, the multiple forward propagations will incur considerable
training cost.

4.6. Training and inference complexity

4.6.1. Training complexity
The training cost of MW-BP is approximately (K/2+ 1) times

of the standard BP method since it conducts one shared forward
propagation and (K + 1) backpropagations at each iteration. If
adding too many outputs to the model, it will greatly slow down
the training process. In practice, introducing up to 4 auxiliary
outputs is sufficient and is able to effectively improve the per-
formance. Although MW-BP has larger training cost than the
standard BP method, it simultaneously produces (K + 1) models.
Therefore, the increased complexity is acceptable when consid-
ering the cost for model selection. Moreover, unlike the multiple
forward propagations in Naïve MW-BP, the shared forward prop-
agation can significantly reduce the computational cost (See more
discussions in Section 6.4).

4.6.2. Inference complexity
During the inference, we do not need to consider the auxiliary

losses. Moreover, MW-BP often produces very compact models
(See results and discussions in Section 5.3). Thus, given the same
architecture, the models trained by MW-BP have the same infer-
ence cost to the ones trained by existing BP methods, but often
exhibit better prediction performance. In other words, under
similar prediction performance, the inference cost for the models
trained by MW-BP can be much lower than the ones trained with
the standard BP method.

5. Experiments

To demonstrate the effectiveness of MW-BP, we apply the pro-
posed MW-BP method to various architectures, including ResNet
(He et al., 2016a), ResNeXt (Xie et al., 2017), DenseNet (Huang
et al., 2017), Inception networks (Szegedy et al., 2017), and
MobileNetV2 (Sandler et al., 2018). For convenience, we use
‘‘Mw+Architecture’’ to represent the model trained by MW-BP
and ‘‘Architecture-L-K̂ ’’ to represent the model with L layers and
K̂ outputs, e.g., MwResNet-56-5. We conduct experiments on
two tasks, namely image classification and face recognition. All
implementations are based on PyTorch.2

2 The source code of MW-BP and the pretrained models are available at
https://github.com/tanmingkui/multiwaybp.

https://github.com/tanmingkui/multiwaybp

256 Y. Guo, J. Chen, Q. Du et al. / Neural Networks 126 (2020) 250–261

Fig. 3. Performance comparison of different BP methods on CIFAR-10. (a) Testing error of different BP methods on MwResNet-56-5. (b) Training error of different
BP methods on MwResNet-56-5. All the curves come from the final outputs of deep models.

We organize the experiments as follows. First, we study and
compare different BP methods in Section 5.1. Second, we exten-
sively evaluate our MW-BP method on image classification tasks
in Section 5.2. Third, we compare the resultant models obtained
by MW-BP with the light models obtained by several compression
methods in Section 5.3. Fourth, we evaluate our method on face
recognition tasks in Section 5.4.

5.1. Comparison of various backpropagation methods

We compare MW-BP with 6 baseline BP methods, including
the standard BP, Joint BP, Relay BP, Naïve MW-BP, Reverse MW-
BP, and Naïve Reverse MW-BP. For a fair comparison, we apply
the same weighting scheme of multiple losses to all the methods.
Here, we first demonstrate the superiority of MW-BP over the
standard BP. Then, we compare MW-BP with two existing BP
methods that exploit auxiliary losses, namely Joint BP and Relay
BP. Last, we compare MW-BP with its three variants.

5.1.1. Data sets and implementation details
We compare the performance of different BP methods on

CIFAR-10 (Krizhevsky & Hinton, 2009). For Relay BP, we use the
same setting in Shen et al. (2016) and set c = 1, i.e., any
intermediate layer only receives the gradients from the nearest
two losses. For all the considered BP methods, we use SGD to
train the models for 400 epochs with a mini-batch size of 128. We
initially set the learning rate to 0.1 and divide it by 10 at 40% and
60% of the total epochs. In this experiment, we set the weighting
scalar to ν = 2 (See more discussions in Section 6.2).

5.1.2. Comparison with existing BP methods
We compare MW-BP with the standard BP and two existing

BP methods that exploit auxiliary losses to train deep models.
In this experiment, we use ResNet-56 as the baseline model.
As for the BP methods trained with auxiliary losses, we evenly
introduce 4 auxiliary losses at intermediate layers (at layer 15, 25,
35, 45, respectively). We compare the evolution of testing error
and training error for different BP methods in Figs. 3(a) and 3(b),
respectively.

From Fig. 3(a), since the intermediate layers can receive suffi-
cient supervision from the nearby losses (See Section 4.3), MW-BP
effectively addresses the supervision vanishing issue and yields
significantly better performance than the model trained with the
standard BP. Compared to Joint BP and Relay BP, the proposed
MW-BP also greatly outperforms these methods and yields the
best testing error of 5.53%. The main reason is that, unlike Joint BP
and Relay BP, MW-BP conducts a backpropagation for each loss

and does not sum up all the losses. In this way, MW-BP effec-
tively avoids the loss conflict issue (See Section 4.4 for details).
However, Joint BP and Relay BP sum up all the losses and would
inevitably incur the loss conflict issue. As a result, the proposed
MW-BP method is able to obtain significantly better results than
these methods.

5.1.3. Comparison with MW-BP variants
We also compare MW-BP with its three variants to show the

importance of the updating order of backpropagations and the
shared forward propagation.

From Fig. 3(a), Naïve MW-BP yields the worst testing perfor-
mance among all the considered methods. However, the train-
ing error decreases very quickly at the beginning epochs (See
Fig. 3(b)). With the decreased training error/loss, the gradient
vanishing issue can be very severe and hamper the performance.
As a result, Naïve MW-BP yields severely degraded performance.

For Reverse MW-BP, when we reverse the updating order of
MW-BP, it yields worse results than MW-BP. The main reason is
that the model update w.r.t. the shallower losses after the deeper
losses would introduce errors into the model (See discussions in
Sections 4.4.1 and 4.5). As a result, the reverse updating order
would hamper the overall performance (See Fig. 3(a)).

For Naïve Reverse MW-BP, it adopts the reverse updating
order of backpropagations and updates the features and losses
before each backpropagation. In this way, the shallow losses will
not affect the deep losses and it significantly outperforms Naïve
MW-BP (See Fig. 3(a)). However, unlike MW-BP, Naïve Reverse
MW-BP with the reverse order cannot correct the errors incurred
by shallow losses (See discussions in Section 4.5). As a result,
Naïve Reverse MW-BP still yields slightly worse results than the
proposed MW-BP method in Fig. 3.

5.2. Experiments on image classification

We apply the proposed MW-BP method to various architec-
tures, including ResNet (He et al., 2016a), WideResNet (Zagoruyko
& Komodakis, 2016), DenseNet (Huang et al., 2017), MobileNetV2
(Sandler et al., 2018) and Inception-ResNet (Szegedy et al., 2017).
In this experiment, we evaluate our method on several image
classification data sets.

5.2.1. Data sets and implementation details
We conduct comparisons on several benchmark data sets, in-

cluding CIFAR-10 (Krizhevsky & Hinton, 2009), CIFAR-100
(Krizhevsky & Hinton, 2009), and ImageNet (Russakovsky et al.,
2015). On CIFAR-10 and CIFAR-100, we perform SGD with a mini-
batch size of 128 and train the model for 400 epochs. The learning

Y. Guo, J. Chen, Q. Du et al. / Neural Networks 126 (2020) 250–261 257

Table 1
Performance comparison on CIFAR-10 and CIFAR-100 data sets. Note that {·/N} indicates an N-fold increase in network width, e.g.,
WideResNet-28-2/10 is 10 times wider than the baseline model. ‘‘–’’ denotes the results that are not reported.
Model Error (%)

CIFAR-10 CIFAR-100

ResNet-44 (He, Zhang, Ren, & Sun, 2016b) 6.37 28.85
ResNet-56 (He et al., 2016b) 6.08 28.46
ResNet-110 (He et al., 2016b) 5.86 27.41
VGG-16 (Simonyan & Zisserman, 2015) 6.01 27.07
DSN (Lee et al., 2015) 7.97 34.57
GoogLeNet (Szegedy et al., 2015) – 21.97
MobileNetV2 (Sandler et al., 2018) 8.35 28.33
WideResNet-28/10 (Zagoruyko & Komodakis, 2016) 4.17 20.50
ResNeXt-29 (Xie et al., 2017) 4.25 21.02
DenseNet-100 (Huang et al., 2017) 3.74 19.25

Model-Depth-K̂ Joint BP Relay BP MW-BP Joint BP Relay BP MW-BP

ResNet-44–2 6.21 6.05 28.03 27.46
ResNet-56–2 5.96 5.77 27.73 26.83
ResNet-44–3 6.07 6.03 5.85 27.86 27.77 27.19
ResNet-56–3 5.93 5.89 5.68 27.69 27.54 26.77
ResNet-56–5 5.83 5.77 5.53 27.37 27.33 26.62
ResNet-110–5 5.62 5.57 5.41 26.94 26.88 26.48
MobileNetV2–3 8.06 7.91 7.63 27.36 27.19 26.77
WideResNet-28-2/10 3.91 3.97 3.77 20.17 20.05 19.69
ResNeXt-29–3 3.98 3.84 3.71 19.23 19.17 18.96
DenseNet-100–4 3.65 3.61 3.53 19.21 19.24 19.13

rate starts from 0.1 and is divided by 10 at 40% and 60% of total
epochs. On ImageNet, we use a mini-batch size of 256. For each
model, we use the same number of epochs and the same learning
rate strategy as the original paper. Specifically, we train ResNet
models for 90 epochs and Inception models for 160 epochs. In all
experiments, we empirically set the weighting scalar to ν = 2
(See results and discussions in Section 6.2).

5.2.2. Comparison on CIFAR-10 and CIFAR-100
We conduct a comprehensive comparison between the pro-

posed MW-BP method and existing BP methods based on var-
ious architectures, including ResNet (He et al., 2016a), Wide
ResNet (Zagoruyko & Komodakis, 2016), ResNeXt (Xie et al.,
2017), DenseNet (Huang et al., 2017), and MobileNetV2 (Sandler
et al., 2018). We show the comparison results on CIFAR-10 and
CIFAR-100 data sets in Table 1.

From Table 1, we have the following observations. First, the
models trained by MW-BP significantly outperform the models
trained by existing BP methods. For example, MwResNet-56-
5 yields much better performance than the ResNet-56 baseline
model trained by the standard BP and the ResNet-56-5 coun-
terparts trained by Joint BP and Relay BP. Second, the proposed
MW-BP is able to effectively reduce the internal model redun-
dancy and produce compact models. To be specific, MwResNet-44
with 44 layers yields comparable or even better results than
ResNet-110 with 110 layers on both CIFAR-10 and CIFAR-100
data sets. Third, when we introduce more auxiliary losses, we can
further improve the performance. For example, MwResNet-56-5
with 5 losses yields better results than MwResNet-56-2 with 2
losses.

Besides the ResNet models, we also apply the proposed MW-
BP to several state-of-the-art architectures, such as ResNeXt,
DenseNet, and MobileNetV2. From Table 1, the resultant models
trained by MW-BP consistently outperform the models trained by
existing BP methods based on various architectures. For ResNeXt
and DenseNet, MW-BP yields the best performance among all
the considered BP methods. Even for a very compact model
MobileNetV2, our MwMobileNetV2-3 also significantly outper-
forms the models trained by other BP methods. These results
demonstrate that the proposed MW-BP method exhibits good
compatibility with the considered deep architectures.

5.2.3. Comparison on ImageNet
We also evaluate the proposed method on a large-scale data

set ImageNet (Krizhevsky et al., 2012). In this experiment, we
apply the MW-BP method to several widely used models, e.g.,
ResNet and Inception network. We show the comparison results
in Table 2.

From Table 2, the proposed MW-BP method consistently out-
performs existing BP methods based on various models. For ex-
ample, MwResNet-18-2, MwResNet-34-2, and MwResNet-50-2
with two outputs yield better results than the models trained
by the standard BP, Joint BP, and Relay BP. When adding more
auxiliary losses, MW-BP is able to obtain better performance,
e.g., MwResNet-50-4. We further apply MW-BP on large models
like ResNet-101 and Inception-ResNet. When we increase the
number of losses up to 4, MwResNet-101-4 obtains a significant
performance improvement of 0.8% in terms of Top-1 error. More-
over, equipped with MW-BP, MwInception-ResNet-4 yields the
best performance among all the considered models in terms of
both Top-1 error and Top-5 error. These results demonstrate the
effectiveness of the proposed MW-BP method.

5.3. Comparison with light models

To demonstrate the superiority of our method in improving
the compactness of deep models, we compare the resultant mod-
els obtained by MW-BP with the deeper models compressed by
several channel pruning methods. In this sense, the compressed
models have approximately the same computational complexity
as the shallow models trained by MW-BP. We show the detailed
comparison results in Tables 3 and 4.

For the considered channel pruning methods, we adopt
ResNet-110 and ResNet-101 as the baseline models on CIFAR-10
and ImageNet, respectively. From Tables 3 and 4, most pruning
methods yield similar or worse performance than the base-
line models. Compared to the considered methods, the resultant
model trained by MW-BP obtains the best or comparable re-
sults in terms of both accuracy and model compactness. For
example, on CIFAR-10, MwResNet-56-5 with 56 layers and 5
outputs achieves a significant accuracy improvement of 0.33%
compared to the baseline ResNet-110 and yields a great reduc-
tion of model size. On ImageNet, our MwResNet-50-4 yields the

258 Y. Guo, J. Chen, Q. Du et al. / Neural Networks 126 (2020) 250–261

Table 2
Comparison with different models on ImageNet in terms of validation error (10-crop).
Model Top-1 error (%) Top-5 error (%)

VGG-16 (Simonyan & Zisserman, 2015) 28.07 9.33
GoogLeNet (Szegedy et al., 2015) – 9.15
ResNet-18 (He et al., 2016a) 28.43 9.97
ResNet-34 (He et al., 2016a) 24.76 7.35
ResNet-50 (He et al., 2016a) 22.85 6.71
ResNet-101 (He et al., 2016a) 21.75 6.05
Inception-ResNet (Szegedy et al., 2017) 18.77 4.13

Model-Depth-K̂ Joint BP Relay BP MW-BP Joint BP Relay BP MW-BP

ResNet-18–2 28.13 27.70 9.93 9.54
ResNet-34–2 24.19 23.76 7.26 7.03
ResNet-50–2 22.78 22.47 6.65 6.27
ResNet-50–4 22.64 22.57 22.15 6.46 6.24 6.07
ResNet-101–4 21.54 21.43 20.95 5.71 5.97 5.25
Inception-ResNet-4 18.75 18.71 18.61 4.15 4.10 4.05

Table 3
Comparison between the resultant MwResNet models and the light models obtained by several state-of-the-art pruning methods on CIFAR-10. ResNet-110 is adopted
as the baseline model.
Model Baseline PFEC (Li

et al., 2017)
ThiNet (Luo
et al., 2017)

CP (He et al.,
2017)

SFP (He, Kang,
Dong, Fu, &
Yang, 2018)

PSFP (He, Dong,
Kang, Fu, &
Yang, 0000)

NISP (Yu
et al., 2018)

MwResNet-
56-5

ResNet-110 on
CIFAR-10

#Params
(M)

1.73 1.16 0.87 0.87 1.10 1.10 0.98 0.85

#FLOPs (M) 253 155 127 127 150 150 143 127
Error (%) 5.86 6.70 6.22 5.91 5.83 6.06 6.04 5.53

Table 4
Comparison between the resultant MwResNet models and the light models obtained by several state-of-the-art pruning methods on ImageNet (10-crop). ResNet-101
is adopted as the baseline model.
Model Baseline Rethinking (Ye, Lu,

Lin, & Wang, 2018)
Taylor-FO-BN (Molchanov,
Mallya, Tyree, Frosio, &
Kautz, 2019)

SFP (He et al.,
2018)

PSFP (He et al.,
0000)

MwResNet-
50-4

ResNet-101 on
ImageNet

#Params (M) 44.55 22.67 26.75 25.23 25.23 25.55
#FLOPs (M) 7260 3847 4790 4159 4159 3530
Top-1 error (%) 21.75 23.85 23.74 22.49 22.72 22.15

best performance with the smallest accuracy drop compared to
the baseline ResNet-101. These results show that the proposed
MW-BP method effectively is able to reduce the internal model
redundancy and thus produces very compact models. It is worth
noting that, unlike most model compression methods, our MW-
BP method is able to train the compact models from scratch and
does not rely on pre-trained models.

5.4. Experiments on face recognition

In this experiment, we further apply MW-BP to a face recogni-
tion model MobileFaceNet (Chen et al., 2018). We add 2 auxiliary
losses at the intermediate layers. For convenience, we term it
MwMobileFaceNet-3 (i.e., containing 3 losses in total). We com-
pare the resultant models with the baseline model trained by the
standard BP on several face recognition data sets.

5.4.1. Data sets and implementation details
We adopt the large-scale data set MS1M (Guo, Zhang, Hu,

He, & Gao, 2016) as the training data and four benchmark data
sets as the validation data, including LFW (Huang, Mattar, Berg,
& Learned-Miller, 2008), CFP-FP (Sengupta et al., 2016), AgeDB-
30 (Moschoglou et al., 2017), and MegaFace (Kemelmacher-
Shlizerman, Seitz, Miller, & Brossard, 2016). We use the same
setting as that in MobileFaceNet (Chen et al., 2018). Specifically,
all face images are preprocessed to the size of 112 × 112. We set
the momentum and weight decay to 0.9 and 4 × 10−5, respec-
tively. We train the models for 36 epochs with a mini-batch size
of 200. The learning rate starts from 0.1 and is divided by 10 at

the {15, 25, 31}th epoch, respectively. We set the weighting scalar
ν = 2 in the face recognition experiments.

5.4.2. Performance comparison
In this experiment, we compare the models trained with and

without MW-BP in terms of the evolution of validation error.
Fig. 4 shows the comparison on 3 data sets, including LFW, CFP-
FP, and AgeDB-30. From Fig. 4, the proposed MW-BP method
greatly accelerates the convergence and yields significantly better
performance than the standard BP method.

Besides the aforementioned 3 data sets, we also evaluate the
models on a large-scale data set MegaFace and show more de-
tailed results in Table 5. From Table 5, our MwMobileFaceNet-3
consistently outperforms the considered baseline models on 4
data sets. These results demonstrate the effectiveness of the
proposed MW-BP method on face recognition models.

6. Further experiments

In this section, we investigate the prediction ability of inter-
mediate models obtained by MW-BP and conduct ablation studies
for the proposed method.

6.1. Prediction ability of intermediate models

In this section, we investigate the prediction ability of the
intermediate models obtained during the training process of MW-
BP. In Table 6, we compare the performance of intermediate

Y. Guo, J. Chen, Q. Du et al. / Neural Networks 126 (2020) 250–261 259

Fig. 4. Performance comparison of the MobileFaceNet models trained with and without MW-BP on 3 benchmark face recognition data sets.

Table 5
Performance comparison of different methods for face recognition. ‘‘VR’’ refers to Verification TAR (True Accepted Rate) and ‘‘FAR10−6 ’’
refers to the False Accepted Rate at 10−6 . ‘‘–’’ denotes the results that are not reported.
Model Validation Accuracy (%) VR@FAR10−6 (%)

LFW CFP-FP AgeDB-30 MegaFace

SphereFace (Liu et al., 2017) 99.42 – – 85.56
CosFace (Wang et al., 2018) 99.33 – – 89.88
MobileFaceNet (Chen et al., 2018) 99.67 97.30 97.02 93.57
MwMobileFaceNet-3 99.72 97.60 97.45 93.94

Table 6
Testing error of the intermediate models obtained by different BP methods on CIFAR-10 and CIFAR-100 data sets.
Model #Layers #Params CIFAR-10 error (%) CIFAR-100 error (%)

Standard BP Joint BP Relay BP MW-BP Standard BP Joint BP Relay BP MW-BP

Model-15 15 0.03M 63.01 61.37 58.93 50.35 87.74 84.51 79.85 71.73
Model-25 25 0.09M 45.07 40.11 39.47 18.94 68.17 63.88 60.37 51.21
Model-35 35 0.18M 34.01 28.92 27.64 9.23 49.54 43.17 41.09 35.88
Model-45 45 0.48M 13.71 11.56 10.21 5.67 35.72 31.63 30.44 27.35
Model-56 56 0.85M 6.08 5.83 5.77 5.53 28.46 27.37 27.33 26.62

Table 7
Effect of the weighting scalar ν on CIFAR-10. MwResNet-56-5 is adopted as the baseline model.
Model ν Error (%)

Model-15 Model-25 Model-35 Model-45 Model-56

MwResNet-56-5
(ResNet-56 6.08%)

0 57.63 25.30 15.94 11.89 8.43
1 49.83 18.77 9.71 5.97 5.90
2 50.35 18.94 9.23 5.67 5.53
5 52.46 19.97 10.93 6.15 6.03

Adaptive-I 41.47 16.05 8.65 6.19 6.08
Adaptive-II 44.89 16.98 9.07 5.64 5.61

Table 8
Effect of the number of losses on the performance of MwResNet-56 on CIFAR-10
data set.
Model #Losses Error (%)

ResNet-56 (He et al., 2016b) 1 6.08

MwResNet-56

2 5.77
5 5.53
10 7.36
25 9.18

models generated by each loss of MwResNet-56-5 against the
models trained by the standard BP,3 Joint BP, and Relay BP.

From Table 6, each intermediate model of MwResNet-56-5
consistently outperforms its competitors (of the same depth)
obtained by the standard BP, Joint BP, and Relay BP. By compar-
ing these results with the results in Table 1, the intermediate

3 To obtain the intermediate models of ResNet-56, We fix the parameters of
all layers and only train the outputs added to the intermediate layers.

model model-45 even outperforms very deep models. For ex-
ample, compared to ResNet-110 with 1.7M parameters (5.86%
error on CIFAR-10 and 27.41% error on CIFAR-100), our model-45
with 0.85M parameters yields better performance on both CIFAR-
10 (5.67% error) and CIFAR-100 (27.35% error). These results
demonstrate that the proposed method not only improves the
representation ability of intermediate layers, but also provides
the opportunity for a form of model selection.

6.2. Effect of the weighting scalar ν

We investigate the effect of the weighting scheme. Two kinds
of weighting schemes are considered. First, we can set ν to a
constant value to adjust the weights of different losses. Second,
we also consider two adaptive strategies to dynamically increase
or decrease the weights during the training, namely Adaptive-
I and Adaptive-II. In Adaptive-I, we initially set ν = 1/2 and
multiply it by 2 when we change the learning rate. Just opposite
to Adaptive-I, in Adaptive-II, we initially set ν = 2 and divide it by

260 Y. Guo, J. Chen, Q. Du et al. / Neural Networks 126 (2020) 250–261

Table 9
Comparisons between the Naïve MW-BP with multiple forward propagations and MW-BP with the shared forward propagation based
on MWResNet-56-5 on CIFAR-10. We measure the inference time for both methods using 128 images.
Method Forward scheme Inference time (ms) MAdds (M) Error (%)

Naïve MW-BP multiple 51.78 415.88 6.37
MW-BP shared 17.10 125.75 5.53

2 along with the change of learning rate. Based on MwResNet-
56-5, we compare the performance of the models trained with
different weighting strategies in Table 7.

We first compare the effect of ν with different constant val-
ues. When we set ν = 0, all the losses are equally weighted.
However, since multiple losses are not equally important (See
Section 4.1.1), the equally weighted losses severely hamper the
performance of MW-BP in Table 7. However, when we choose a
large value of ν = 5, the weights would decay so aggressively
that the effects of auxiliary outputs are negligible. To avoid this
issue, we empirically choose ν = 2 and this setting yields the best
performance in practice.

For the two adaptive strategies, from Table 7, they yield
slightly worse results than the best setting of ν = 2 at the final
output. However, they significantly improve the performance of
intermediate models. Therefore, we suggest that one can use the
adaptive strategies to obtain better intermediate models.

6.3. Effect of the numbers of losses

We investigate the effect of the number of losses. We take
ResNet-56 for example and insert different numbers of losses.
From the results in Table 8, MwResNet-56-2 and MwResNet-56-
5 perform significantly better than ResNet-56. However, adding
too many losses does not necessarily improve the performance.
For example, the MwResNet-56 models with 10 and 25 outputs
yield severely degraded performance. The main reason is that the
interval between losses is too small so that they may affect each
other and eventually degrade the performance. Moreover, adding
too many losses will also slow down the training. In practice,
introducing up to 5 losses is sufficient to effectively improve the
performance according to previous experimental results.

6.4. Effect of the shard forward propagation

In this section, we investigate the effect of the shared forward
propagation in terms of both the computational cost and the
learning performance. Specifically, we compare the shard forward
propagation in MW-BP and the multiple forward propagations in
Naïve MW-BP. Unlike Naïve MW-BP, the shared forward propa-
gation in MW-BP only performs single forward propagation and
thus greatly reduces the computational cost. To verify this, we
take MwResNet-56-5 with 5 losses as an example. As shown in
Table 9, MW-BP takes significantly lower cost in terms of infer-
ence time and the number of multiply-adds (MAdds) and yields
better results than Naïve MW-BP. These results demonstrate the
effectness of the proposed shared forward propagation.

7. Conclusion

In this paper, we have investigated the supervision vanishing
issue in existing backpropagation (BP) methods for training deep
networks. When the network is very deep, shallow layers tend to
receive insufficient supervision due to the severe transformation
through long backpropagation path, resulting in severe internal
model redundancy. To address these issues, we introduced aux-
iliary losses into deep models and proposed an effective training

method, called Multi-way BP (MW-BP). Based on various archi-
tectures, our method consistently obtains significant performance
improvement and produces more compact models than exist-
ing BP methods. More critically, with approximately the same
model complexity, the resultant models also outperform the light
models obtained by state-of-the-art model compression meth-
ods. Extensive experiments on both image classification and face
recognition tasks demonstrate the effectiveness of the proposed
method.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This work was partially supported by Guangdong Provincial
Scientific and Technological Funds under Grants
2018B010107001 and 2019B010155002, National Natural Science
Foundation of China (NSFC) 61836003 (key project), Fundamental
Research Funds for the Central Universities D2191240, Program
for Guangdong Introducing Innovative and Enterpreneurial Teams
2017ZT07X183, Tencent AI Lab Rhino-Bird Focused Research Pro-
gram JR201902, Guangdong Special Branch Plans Young Tal-
ent with Scientific and Technological Innovation 2016TQ03X445,
Guangzhou Science and Technology Planning Project
201904010197, and Microsoft Research Asia (MSRA Collaborative
Research Program).

References

Ba, J., & Caruana, R. (2014). Do deep nets really need to be deep? In NeurIPS
(pp. 2654–2662).

Cao, J., Guo, Y., Wu, Q., Shen, C., Huang, J., & Tan, M. (2018). Adversarial learning
with local coordinate coding. In ICML.

Chen, S., Liu, Y., Gao, X., & Han, Z. (2018). Mobilefacenets: Efficient cnns for
accurate real-time face verification on mobile devices. In CCBR (pp. 428–438).

Drucker, H., & Le Cun, Y. (1992). Improving generalization performance using
double backpropagation. IEEE Transactions on Neural Networks, 3(6), 991–997.

Gonzalez-Dominguez, J., Lopez-Moreno, I., Moreno, P. J., & Gonzalez-Rodriguez, J.
(2015). Frame-by-frame language identification in short utterances using
deep neural networks. Neural Networks, 64, 49–58.

Guo, Y., Chen, Q., Chen, J., Wu, Q., Shi, Q., & Tan, M. (2019). Auto-embedding
generative adversarial networks for high resolution image synthesis. TMM,
21(11), 2726–2737.

Guo, Y., Wu, Q., Deng, C., Chen, J., & Tan, M. (2018). Double forward propagation
for memorized batch normalization. In AAAI (pp. 3134–3141).

Guo, Y., Zhang, L., Hu, Y., He, X., & Gao, J. (2016). Ms-celeb-1m: A dataset and
benchmark for large-scale face recognition. In ECCV (pp. 87–102).

Guo, Y., Zheng, Y., Tan, M., Chen, Q., Chen, J., Zhao, P., et al. (2019). Nat: Neural
architecture transformer for accurate and compact architectures. In NeurIPS
(pp. 735–747).

He, Y., Dong, X., Kang, G., Fu, Y., & Yang, Y. Progressive deep neural networks
acceleration via soft filter pruning, arXiv preprint abs/1808.07471.

He, Y., Kang, G., Dong, X., Fu, Y., & Yang, Y. (2018). Soft filter pruning for
accelerating deep convolutional neural networks. In IJCAI (pp. 2234–2240).

He, Y., Liu, P., Wang, Z., Hu, Z., & Yang, Y. (2019). Filter pruning via geometric
median for deep convolutional neural networks acceleration. In CVPR (pp.
4340–4349).

He, K., Zhang, X., Ren, S., & Sun, J. (2016a). Deep residual learning for image
recognition. In CVPR (pp. 770–778).

http://refhub.elsevier.com/S0893-6080(20)30078-2/sb1
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb1
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb1
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb2
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb2
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb2
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb3
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb3
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb3
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb4
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb4
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb4
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb5
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb5
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb5
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb5
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb5
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb6
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb6
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb6
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb6
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb6
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb7
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb7
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb7
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb8
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb8
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb8
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb9
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb9
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb9
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb9
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb9
http://arxiv.org/abs/1808.07471
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb11
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb11
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb11
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb12
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb12
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb12
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb12
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb12
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb13
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb13
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb13

Y. Guo, J. Chen, Q. Du et al. / Neural Networks 126 (2020) 250–261 261

He, K., Zhang, X., Ren, S., & Sun, J. (2016b). Identity mappings in deep residual
networks. In ECCV (pp. 630–645).

He, Y., Zhang, X., & Sun, J. (2017). Channel pruning for accelerating very deep
neural networks. In ICCV (pp. 1398–1406).

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., et
al. Mobilenets: Efficient convolutional neural networks for mobile vision
applications, arXiv preprint abs/1704.04861.

Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely
connected convolutional networks. In CVPR (pp. 4700–4708).

Huang, G. B., Mattar, M., Berg, T., & Learned-Miller, E. (2008). Labeled faces
in the wild: A database forstudying face recognition in unconstrained
environments.

Ibtehaz, N., & Rahman, M. S. (2020). Multiresunet: rethinking the u-net architec-
ture for multimodal biomedical image segmentation. Neural Networks, 121,
74–87.

Kemelmacher-Shlizerman, I., Seitz, S. M., Miller, D., & Brossard, E. (2016). The
megaface benchmark: 1 million faces for recognition at scale. In CVPR
(pp. 4873–4882).

Krizhevsky, A., & Hinton, G. (2009). Learning multiple layers of features from
tiny images.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with
deep convolutional neural networks. In NeurIPS (pp. 1097–1105).

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553),
436–444.

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W.,
et al. (1989). Backpropagation applied to handwritten zip code recognition.
Neural Computation, 1(4), 541–551.

Lee, C.-Y., Xie, S., Gallagher, P., Zhang, Z., & Tu, Z. (2015). Deeply-supervised nets.
In AISTATS.

Li, H., Kadav, A., Durdanovic, I., Samet, H., & Graf, H. P. (2017). Pruning filters
for efficient convnets. In ICLR.

Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., & Song, L. (2017). Sphereface: Deep
hypersphere embedding for face recognition. In CVPR (pp. 212–220).

Liu, J., Zhuang, B., Zhuang, Z., Guo, Y., Huang, J., Zhu, J., et al. Discrimination-
aware network pruning for deep model compression, arXiv preprint arXiv:
2001.01050.

Luo, J.-H., Wu, J., & Lin, W. (2017). Thinet: A filter level pruning method for deep
neural network compression. In ICCV (pp. 5068–5076).

Molchanov, P., Mallya, A., Tyree, S., Frosio, I., & Kautz, J. (2019). Importance
estimation for neural network pruning. In CVPR (pp. 11264–11272).

Moschoglou, S., Papaioannou, A., Sagonas, C., Deng, J., Kotsia, I., & Zafeiriou, S.
(2017). Agedb: the first manually collected, in-the-wild age database. In CVPR
workshops (pp. 51–59).

Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted
Boltzmann machines. In ICML (pp. 807–814).

Pascanu, R., Mikolov, T., & Bengio, Y. Understanding the exploding gradient
problem, CoRR, abs/1211.50632.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., et al. (2015).
Imagenet large scale visual recognition challenge. IJCV, 115(3), 211–252.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L.-C. (2018).
Mobilenetv2: Inverted residuals and linear bottlenecks. In CVPR
(pp. 4510–4520).

Sengupta, S., Chen, J.-C., Castillo, C., Patel, V. M., Chellappa, R., & Jacobs, D. W.
(2016). Frontal to profile face verification in the wild. In WACV (pp. 1–9).

Shen, L., Lin, Z., & Huang, Q. (2016). Relay backpropagation for effective learning
of deep convolutional neural networks. In ECCV (pp. 467–482).

Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for
large-scale image recognition. In ICLR.

Srivastava, R. K., Greff, K., & Schmidhuber, J. (2015). Training very deep networks.
In NeurIPS (pp. 2377–2385).

Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. A. (2017). Inception-v4,
inception-resnet and the impact of residual connections on learning. In AAAI
(pp. 4278–4284).

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., et al. (2015).
Going deeper with convolutions. In CVPR (pp. 1–9).

Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M., Howard, A., et al. (2019).
Mnasnet: Platform-aware neural architecture search for mobile. In CVPR
(pp. 2820–2828).

Wang, H., Dai, L., Cai, Y., Sun, X., & Chen, L. (2018). Salient object detection based
on multi-scale contrast. Neural Networks, 101, 47–56.

Wang, H., Wang, Y., Zhou, Z., Ji, X., Gong, D., Zhou, J., et al. (2018). Cosface: Large
margin cosine loss for deep face recognition. In CVPR.

Wilson, D. R., & Martinez, T. R. (2003). The general inefficiency of batch training
for gradient descent learning. Neural Networks, 16(10), 1429.

Xie, S., Girshick, R., Dollár, P., Tu, Z., & He, K. (2017). Aggregated residual
transformations for deep neural networks. In CVPR (pp. 1492–1500).

Ye, J., Lu, X., Lin, Z., & Wang, J. Z. (2018). Rethinking the smaller-norm-
less-informative assumption in channel pruning of convolution layers. In
ICLR.

Yu, R., Li, A., Chen, C.-F., Lai, J.-H., Morariu, V. I., Han, X., et al. (2018). Nisp:
Pruning networks using neuron importance score propagation. In CVPR
(pp. 9194–9203).

Zagoruyko, S., & Komodakis, N. (2016). Wide residual networks. In BMVC.
Zhang, X., Zhou, X., Lin, M., & Sun, J. (2018). Shufflenet: An extremely efficient

convolutional neural network for mobile devices. In CVPR (pp. 6848–6856).
Zhuang, Z., Tan, M., Zhuang, B., Liu, J., Guo, Y., Wu, Q., et al. (2018).

Discrimination-aware channel pruning for deep neural networks. In NeurIPS
(pp. 875–886).

http://refhub.elsevier.com/S0893-6080(20)30078-2/sb14
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb14
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb14
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb15
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb15
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb15
http://arxiv.org/abs/1704.04861
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb17
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb17
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb17
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb18
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb18
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb18
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb18
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb18
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb19
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb19
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb19
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb19
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb19
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb20
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb20
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb20
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb20
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb20
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb21
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb21
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb21
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb22
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb22
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb22
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb23
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb23
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb23
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb24
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb24
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb24
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb24
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb24
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb25
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb25
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb25
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb26
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb26
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb26
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb27
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb27
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb27
http://arxiv.org/abs/2001.01050
http://arxiv.org/abs/2001.01050
http://arxiv.org/abs/2001.01050
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb29
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb29
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb29
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb30
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb30
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb30
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb31
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb31
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb31
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb31
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb31
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb32
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb32
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb32
http://arxiv.org/abs/1211.50632
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb34
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb34
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb34
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb35
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb35
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb35
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb35
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb35
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb36
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb36
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb36
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb37
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb37
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb37
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb38
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb38
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb38
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb39
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb39
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb39
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb40
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb40
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb40
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb40
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb40
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb41
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb41
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb41
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb42
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb42
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb42
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb42
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb42
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb43
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb43
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb43
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb44
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb44
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb44
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb45
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb45
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb45
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb46
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb46
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb46
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb47
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb47
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb47
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb47
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb47
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb48
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb48
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb48
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb48
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb48
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb49
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb50
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb50
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb50
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb51
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb51
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb51
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb51
http://refhub.elsevier.com/S0893-6080(20)30078-2/sb51

	Multi-way backpropagation for training compact deep neural networks
	Introduction
	Related work
	Deep models with multiple losses
	Backpropagation methods
	Compact model design
	Model compression methods

	Supervision vanishing in deep networks
	Multi-way backpropagation for deep models with auxiliary losses
	Deep model with auxiliary losses
	Adaptive weighting scheme for auxiliary losses
	Number of auxiliary outputs

	Existing BP methods for multiple losses
	Joint BP
	Relay BP

	Multi-way backpropagation
	Characteristics of MW-BP
	The order of conducting backpropagations
	The shared forward propagation

	More discussions
	Training and inference complexity
	Training complexity
	Inference complexity

	Experiments
	Comparison of various backpropagation methods
	Data sets and implementation details
	Comparison with existing BP methods
	Comparison with MW-BP variants

	Experiments on image classification
	Data sets and implementation details
	Comparison on CIFAR-10 and CIFAR-100
	Comparison on ImageNet

	Comparison with light models
	Experiments on face recognition
	Data sets and implementation details
	Performance comparison

	Further experiments
	Prediction ability of intermediate models
	Effect of the weighting scalar
	Effect of the numbers of losses
	Effect of the shard forward propagation

	Conclusion
	Declaration of competing interest
	Acknowledgments
	References

